Suppr超能文献

甲硫氨酸亚砜还原酶可保护酵母中的铁硫簇免受氧化失活。

Methionine sulphoxide reductases protect iron-sulphur clusters from oxidative inactivation in yeast.

作者信息

Sideri Theodora C, Willetts Sylvia A, Avery Simon V

机构信息

School of Biology, Institute of Genetics, University of Nottingham, Nottingham NG7 2RD, UK.

出版信息

Microbiology (Reading). 2009 Feb;155(Pt 2):612-623. doi: 10.1099/mic.0.022665-0.

Abstract

Methionine residues and iron-sulphur (FeS) clusters are primary targets of reactive oxygen species in the proteins of micro-organisms. Here, we show that methionine redox modifications help to preserve essential FeS cluster activities in yeast. Mutants defective for the highly conserved methionine sulphoxide reductases (MSRs; which re-reduce oxidized methionines) are sensitive to many pro-oxidants, but here exhibited an unexpected copper resistance. This phenotype was mimicked by methionine sulphoxide supplementation. Microarray analyses highlighted several Cu and Fe homeostasis genes that were upregulated in the mxrDelta double mutant, which lacks both of the yeast MSRs. Of the upregulated genes, the Cu-binding Fe transporter Fet3p proved to be required for the Cu-resistance phenotype. FET3 is known to be regulated by the Aft1 transcription factor, which responds to low mitochondrial FeS-cluster status. Here, constitutive Aft1p expression in the wild-type reproduced the Cu-resistance phenotype, and FeS-cluster functions were found to be defective in the mxrDelta mutant. Genetic perturbation of FeS activity also mimicked FET3-dependent Cu resistance. 55Fe-labelling studies showed that FeS clusters are turned over more rapidly in the mxrDelta mutant than the wild-type, consistent with elevated oxidative targeting of the clusters in MSR-deficient cells. The potential underlying molecular mechanisms of this targeting are discussed. Moreover, the results indicate an important new role for cellular MSR enzymes in helping to protect the essential function of FeS clusters in aerobic settings.

摘要

甲硫氨酸残基和铁硫(FeS)簇是微生物蛋白质中活性氧的主要作用靶点。在此,我们表明甲硫氨酸氧化还原修饰有助于维持酵母中必需的FeS簇活性。对高度保守的甲硫氨酸亚砜还原酶(MSR,其作用是将氧化的甲硫氨酸重新还原)有缺陷的突变体对许多促氧化剂敏感,但在此却表现出意外的铜抗性。补充甲硫氨酸亚砜可模拟此表型。微阵列分析突出显示了几个铜和铁稳态基因,这些基因在缺乏两种酵母MSR的mxrDelta双突变体中上调。在这些上调的基因中,铜结合铁转运蛋白Fet3p被证明是铜抗性表型所必需的。已知FET3受Aft1转录因子调控,Aft1转录因子对线粒体FeS簇状态低作出反应。在此,野生型中组成型Aft1p表达重现了铜抗性表型,并且发现mxrDelta突变体中的FeS簇功能存在缺陷。FeS活性的基因干扰也模拟了FET3依赖性铜抗性。55Fe标记研究表明,mxrDelta突变体中FeS簇的周转比野生型更快,这与MSR缺陷细胞中簇的氧化靶向升高一致。讨论了这种靶向潜在的分子机制。此外,结果表明细胞MSR酶在帮助保护有氧环境中FeS簇的基本功能方面具有重要的新作用。

相似文献

1
Methionine sulphoxide reductases protect iron-sulphur clusters from oxidative inactivation in yeast.
Microbiology (Reading). 2009 Feb;155(Pt 2):612-623. doi: 10.1099/mic.0.022665-0.
2
Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity.
FEBS J. 2018 May;285(10):1861-1872. doi: 10.1111/febs.14450. Epub 2018 Apr 17.
4
Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis.
J Biol Chem. 2004 Jul 9;279(28):29513-8. doi: 10.1074/jbc.M403209200. Epub 2004 Apr 28.
6
A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae.
Mol Microbiol. 2014 Jul;93(2):317-30. doi: 10.1111/mmi.12661. Epub 2014 Jun 15.
7
8
Structure-function analysis of the cuprous oxidase activity in Fet3p from Saccharomyces cerevisiae.
J Biol Chem. 2007 Mar 16;282(11):7862-8. doi: 10.1074/jbc.M609766200. Epub 2007 Jan 12.
9
Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.
J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.
10
Biophysical investigation of the iron in Aft1-1(up) and Gal-YAH1 Saccharomyces cerevisiae.
Biochemistry. 2011 Apr 5;50(13):2660-71. doi: 10.1021/bi102015s. Epub 2011 Feb 28.

引用本文的文献

1
Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms.
J Fungi (Basel). 2022 Sep 20;8(10):984. doi: 10.3390/jof8100984.
2
Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes.
ACS Chem Biol. 2022 Jul 15;17(7):1876-1889. doi: 10.1021/acschembio.2c00301. Epub 2022 Jun 13.
3
Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action.
Front Microbiol. 2020 Sep 25;11:575157. doi: 10.3389/fmicb.2020.575157. eCollection 2020.
4
Methionine and Glycine Stabilize Mitochondrial Activity in Sake Yeast During Ethanol Fermentation.
Food Technol Biotechnol. 2019 Dec;57(4):535-543. doi: 10.17113/ftb.57.04.19.5665.
7
Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess.
Cell Chem Biol. 2017 Oct 19;24(10):1228-1237.e3. doi: 10.1016/j.chembiol.2017.08.005. Epub 2017 Aug 31.
8
Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin.
Microb Cell. 2014 Oct 24;1(11):352-364. doi: 10.15698/mic2014.11.175.
9
Reduction in mitochondrial iron alleviates cardiac damage during injury.
EMBO Mol Med. 2016 Mar 1;8(3):247-67. doi: 10.15252/emmm.201505748.
10

本文引用的文献

3
Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis.
J Biol Chem. 2008 Mar 28;283(13):8318-30. doi: 10.1074/jbc.M705570200. Epub 2008 Jan 28.
4
Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae.
FEBS Lett. 2008 Feb 20;582(4):503-9. doi: 10.1016/j.febslet.2008.01.009. Epub 2008 Jan 17.
5
Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms.
J Neurosci. 2007 Nov 21;27(47):12808-16. doi: 10.1523/JNEUROSCI.0322-07.2007.
6
Substrates of the methionine sulfoxide reductase system and their physiological relevance.
Curr Top Dev Biol. 2008;80:93-133. doi: 10.1016/S0070-2153(07)80003-2.
7
Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells.
Mol Microbiol. 2007 Nov;66(3):699-712. doi: 10.1111/j.1365-2958.2007.05951.x. Epub 2007 Oct 4.
9
Methods for studying iron metabolism in yeast mitochondria.
Methods Cell Biol. 2007;80:261-80. doi: 10.1016/S0091-679X(06)80013-0.
10
Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.
Hum Mol Genet. 2007 Apr 15;16(8):929-41. doi: 10.1093/hmg/ddm038. Epub 2007 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验