Suppr超能文献

酿酒酵母游离蛋氨酸-R-亚砜还原酶的功能分析

Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.

作者信息

Le Dung Tien, Lee Byung Cheon, Marino Stefano M, Zhang Yan, Fomenko Dmitri E, Kaya Alaattin, Hacioglu Elise, Kwak Geun-Hee, Koc Ahmet, Kim Hwa-Young, Gladyshev Vadim N

机构信息

Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.

出版信息

J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.

Abstract

Methionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys(101) as catalytic and Cys(125) as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys(91), clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.

摘要

甲硫氨酸亚砜还原酶(Msrs)是一类氧化还原酶,可催化依赖硫醇的氧化型甲硫氨酸的还原反应。MsrA和MsrB是最为人熟知的Msrs,它们分别修复蛋白质中的甲硫氨酸-S-亚砜(Met-S-SO)和甲硫氨酸-R-亚砜(Met-R-SO)残基。此外,最近还发现了一种对游离Met-R-SO具有特异性的大肠杆菌酶,命名为fRMsr。在本研究中,我们进行了比较基因组学和实验分析,以研究fRMsr的存在、进化及功能。该蛋白在约一半的原核生物和单细胞真核生物中以单拷贝和两种相互排斥的亚型形式存在,但在高等植物和动物中缺失。发现酿酒酵母的fRMsr同源物可还原游离的Met-R-SO,但不能还原游离的Met-S-SO或丹磺酰甲硫氨酸-R-亚砜(dabsyl-Met-R-SO)。fRMsr负责酵母细胞在Met-R-SO上的生长,fRMsr/MsrA双突变体无法在甲硫氨酸亚砜混合物上生长。然而,在甲硫氨酸存在的情况下,即使是fRMsr/MsrA/MsrB三突变体也能存活。此外,fRMsr缺失菌株对氧化应激的敏感性增加,寿命缩短,而fRMsr的过表达赋予了更高的抗氧化剂抗性。分子建模和硫氧还蛋白对半胱氨酸残基的靶向作用表明,酵母fRMsr中的Cys(101)为催化残基,Cys(125)为拆分残基。这些残基以及第三个半胱氨酸,即拆分Cys(91),在结构中聚集在一起,且每个残基都是该酶催化活性所必需的。数据表明,fRMsr是酿酒酵母中负责还原游离Met-R-SO的主要酶。

相似文献

1
Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.
J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.
2
Cysteine-125 is the catalytic residue of Saccharomyces cerevisiae free methionine-R-sulfoxide reductase.
Biochem Biophys Res Commun. 2010 May 7;395(3):412-5. doi: 10.1016/j.bbrc.2010.04.036. Epub 2010 Apr 9.
3
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602. doi: 10.1073/pnas.0703774104. Epub 2007 May 29.
4
A methionine sulfoxide reductase in Escherichia coli that reduces the R enantiomer of methionine sulfoxide.
Biochem Biophys Res Commun. 2003 Jan 10;300(2):378-82. doi: 10.1016/s0006-291x(02)02870-x.
5
Diversity of plant methionine sulfoxide reductases B and evolution of a form specific for free methionine sulfoxide.
PLoS One. 2013 Jun 12;8(6):e65637. doi: 10.1371/journal.pone.0065637. Print 2013.
6
Functions and evolution of selenoprotein methionine sulfoxide reductases.
Biochim Biophys Acta. 2009 Nov;1790(11):1471-7. doi: 10.1016/j.bbagen.2009.04.014. Epub 2009 May 4.
7
Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast.
Biochemistry. 2010 Oct 5;49(39):8618-25. doi: 10.1021/bi100908v. Epub 2010 Sep 9.
8
The methionine sulfoxide reductases: Catalysis and substrate specificities.
Arch Biochem Biophys. 2008 Jun 15;474(2):266-73. doi: 10.1016/j.abb.2008.02.007. Epub 2008 Feb 13.
9
Analyses of methionine sulfoxide reductase activities towards free and peptidyl methionine sulfoxides.
Arch Biochem Biophys. 2012 Nov 1;527(1):1-5. doi: 10.1016/j.abb.2012.07.009. Epub 2012 Jul 31.
10
Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase.
J Biol Chem. 2002 Oct 4;277(40):37527-35. doi: 10.1074/jbc.M203496200. Epub 2002 Jul 26.

引用本文的文献

3
Central Carbon Metabolism in Biofilms Is Altered by Dimethyl Sulfoxide.
J Fungi (Basel). 2024 May 8;10(5):337. doi: 10.3390/jof10050337.
6
Methionine Sulfoxide Reductases Suppress the Formation of the [] Prion and Protein Aggregation in Yeast.
Antioxidants (Basel). 2023 Feb 7;12(2):401. doi: 10.3390/antiox12020401.
7
The Potential of a Protein Model Synthesized Absent of Methionine.
Molecules. 2022 Jun 8;27(12):3679. doi: 10.3390/molecules27123679.
8
Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis.
Synth Syst Biotechnol. 2021 Dec 10;7(1):481-489. doi: 10.1016/j.synbio.2021.12.001. eCollection 2022 Mar.
10
Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action.
Front Microbiol. 2020 Sep 25;11:575157. doi: 10.3389/fmicb.2020.575157. eCollection 2020.

本文引用的文献

3
The methionine sulfoxide reductases: Catalysis and substrate specificities.
Arch Biochem Biophys. 2008 Jun 15;474(2):266-73. doi: 10.1016/j.abb.2008.02.007. Epub 2008 Feb 13.
6
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602. doi: 10.1073/pnas.0703774104. Epub 2007 May 29.
7
Selective prediction of interaction sites in protein structures with THEMATICS.
BMC Bioinformatics. 2007 Apr 9;8:119. doi: 10.1186/1471-2105-8-119.
8
Toward automatic reconstruction of a highly resolved tree of life.
Science. 2006 Mar 3;311(5765):1283-7. doi: 10.1126/science.1123061.
9
Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases.
PLoS Biol. 2005 Dec;3(12):e375. doi: 10.1371/journal.pbio.0030375. Epub 2005 Nov 8.
10
Overexpression of MsrA protects WI-38 SV40 human fibroblasts against H2O2-mediated oxidative stress.
Free Radic Biol Med. 2005 Nov 15;39(10):1332-41. doi: 10.1016/j.freeradbiomed.2005.06.017. Epub 2005 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验