Suppr超能文献

从超高密度三维微阵列估计量子点编码微粒的位置。

Estimating locations of quantum-dot-encoded microparticles from ultra-high density 3-D microarrays.

作者信息

Sarder Pinaki, Nehorai Arye

机构信息

Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.

出版信息

IEEE Trans Nanobioscience. 2008 Dec;7(4):284-97. doi: 10.1109/TNB.2008.2011861.

Abstract

We develop a maximum likelihood (ML)-based parametric image deconvolution technique to locate quantum-dot (q-dot) encoded microparticles from three-dimensional (3-D) images of an ultra-high density 3-D microarray. A potential application of the proposed microarray imaging is assay analysis of gene, protein, antigen, and antibody targets. This imaging is performed using a wide-field fluorescence microscope. We first describe our problem of interest and the pertinent measurement model by assuming additive Gaussian noise. We use a 3-D Gaussian point-spread-function (PSF) model to represent the blurring of the widefield microscope system. We employ parametric spheres to represent the light intensity profiles of the q-dot-encoded microparticles. We then develop the estimation algorithm for the single-sphere-object image assuming that the microscope PSF is totally unknown. The algorithm is tested numerically and compared with the analytical Cramér-Rao bounds (CRB). To apply our analysis to real data, we first segment a section of the blurred 3-D image of the multiple microparticles using a k-means clustering algorithm, obtaining 3-D images of single-sphere-objects. Then, we process each of these images using our proposed estimation technique. In the numerical examples, our method outperforms the blind deconvolution (BD) algorithms in high signal-to-noise ratio (SNR) images. For the case of real data, our method and the BD-based methods perform similarly for the well-separated microparticle images.

摘要

我们开发了一种基于最大似然(ML)的参数图像去卷积技术,用于从超高密度三维微阵列的三维图像中定位量子点(q点)编码的微粒。所提出的微阵列成像的一个潜在应用是基因、蛋白质、抗原和抗体靶点的分析检测。这种成像使用宽场荧光显微镜进行。我们首先通过假设加性高斯噪声来描述我们感兴趣的问题和相关的测量模型。我们使用三维高斯点扩散函数(PSF)模型来表示宽场显微镜系统的模糊。我们采用参数化球体来表示q点编码微粒的光强分布。然后,我们在假设显微镜PSF完全未知的情况下,开发了单球体物体图像的估计算法。该算法进行了数值测试,并与解析克拉美罗界(CRB)进行了比较。为了将我们的分析应用于实际数据,我们首先使用k均值聚类算法对多个微粒的模糊三维图像的一部分进行分割,得到单球体物体的三维图像。然后,我们使用我们提出的估计技术处理这些图像中的每一个。在数值示例中,我们的方法在高信噪比(SNR)图像中优于盲去卷积(BD)算法。对于实际数据的情况,我们的方法和基于BD的方法在微粒图像分离良好时表现相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验