Dey Nicolas, Blanc-Feraud Laure, Zimmer Christophe, Roux Pascal, Kam Zvi, Olivo-Marin Jean-Christophe, Zerubia Josiane
Ariana Group, INRIA/I3S, 2004 route des Lucioles-BP93, 06902 Sophia Antipolis, France.
Microsc Res Tech. 2006 Apr;69(4):260-6. doi: 10.1002/jemt.20294.
Confocal laser scanning microscopy is a powerful and popular technique for 3D imaging of biological specimens. Although confocal microscopy images are much sharper than standard epifluorescence ones, they are still degraded by residual out-of-focus light and by Poisson noise due to photon-limited detection. Several deconvolution methods have been proposed to reduce these degradations, including the Richardson-Lucy iterative algorithm, which computes maximum likelihood estimation adapted to Poisson statistics. As this algorithm tends to amplify noise, regularization constraints based on some prior knowledge on the data have to be applied to stabilize the solution. Here, we propose to combine the Richardson-Lucy algorithm with a regularization constraint based on Total Variation, which suppresses unstable oscillations while preserving object edges. We show on simulated and real images that this constraint improves the deconvolution results as compared with the unregularized Richardson-Lucy algorithm, both visually and quantitatively.
共聚焦激光扫描显微镜是一种用于生物样本三维成像的强大且常用的技术。尽管共聚焦显微镜图像比标准落射荧光图像清晰得多,但由于光子限制检测导致的残余离焦光和泊松噪声,它们仍然会退化。已经提出了几种去卷积方法来减少这些退化,包括理查森 - 露西迭代算法,该算法计算适用于泊松统计的最大似然估计。由于该算法倾向于放大噪声,因此必须应用基于数据的一些先验知识的正则化约束来稳定解。在这里,我们建议将理查森 - 露西算法与基于总变分的正则化约束相结合,该约束在保留物体边缘的同时抑制不稳定振荡。我们在模拟图像和真实图像上表明,与未正则化的理查森 - 露西算法相比,这种约束在视觉和定量方面都改善了去卷积结果。