Ray Clare J, Marshall Janice M
University of Birmingham, UK.
J Physiol. 2009 Apr 1;587(Pt 7):1565-78. doi: 10.1113/jphysiol.2008.163683. Epub 2009 Feb 9.
Adenosine is implicated in playing a role in blood flow responses to situations where O(2) delivery is reduced (hypoxia) or O(2) consumption is increased (exercise). Strong isometric contractions have been shown to limit vasodilatation, potentially leading to a greater mismatch between and than during twitch contractions. Thus, we hypothesized that adenosine makes a greater contribution to the hyperaemia associated with isometric tetanic than isometric twitch contractions and aimed to elucidate the adenosine-receptor subtypes involved in the response. In four groups of anaesthetized rats, arterial blood pressure (ABP), femoral blood flow (FBF) and tension in the extensor digitorum longus muscle were recorded; isometric twitch and tetanic contractions were evoked by stimulation of the sciatic nerve for 5 min at 4 Hz and 40 Hz, respectively. Groups 1 (twitch) and 3 (tetanic) were time controls for Groups 2 and 4, which received the selective A(2A)-receptor antagonist ZM241385 before the third and 8-sulphophenyltheophylline (8-SPT; a non-selective adenosine receptor antagonist) before the fourth contraction. Time controls showed consistent tension and hyperaemic responses: twitch and tetanic contractions were associated with a 3-fold and 2.5-fold increase in femoral vascular conductance (FVC, FBF/ABP) from baseline, respectively. ZM241385 reduced these responses by 14% and as much as 25%, respectively; 8-SPT had no further effect. We propose that, while twitch contractions produce a larger hyperaemia, adenosine acting via A(2A)-receptors plays a greater role in the hyperaemia associated with tetanic contraction. These results are considered in relation to the A(1)-receptor-mediated muscle dilatation evoked by systemic hypoxia.
腺苷在对氧气输送减少(缺氧)或氧气消耗增加(运动)的情况的血流反应中发挥作用。已表明强烈的等长收缩会限制血管舒张,这可能导致与单收缩相比,等长收缩期间供需之间的不匹配更大。因此,我们假设腺苷对等长强直收缩相关的充血的贡献比对等长单收缩的更大,并旨在阐明参与该反应的腺苷受体亚型。在四组麻醉大鼠中,记录动脉血压(ABP)、股血流量(FBF)和趾长伸肌的张力;分别通过以4 Hz和40 Hz刺激坐骨神经5分钟来诱发等长单收缩和强直收缩。第1组(单收缩)和第3组(强直收缩)分别是第2组和第4组的时间对照组,第2组在第三次收缩前接受选择性A(2A)受体拮抗剂ZM241385,第4组在第四次收缩前接受8-磺酰苯甲酰茶碱(8-SPT;一种非选择性腺苷受体拮抗剂)。时间对照组显示出一致的张力和充血反应:单收缩和强直收缩分别与股血管传导率(FVC,FBF/ABP)较基线增加3倍和2.5倍相关。ZM241385分别将这些反应降低了14%和多达25%;8-SPT没有进一步影响。我们提出,虽然单收缩产生更大的充血,但通过A(2A)受体起作用的腺苷在与强直收缩相关的充血中起更大作用。这些结果与全身缺氧诱发的A(1)受体介导的肌肉舒张有关。