Suppr超能文献

阐明大鼠体内腺苷和A2A受体在单收缩和强直收缩充血中的作用。

Elucidation in the rat of the role of adenosine and A2A-receptors in the hyperaemia of twitch and tetanic contractions.

作者信息

Ray Clare J, Marshall Janice M

机构信息

University of Birmingham, UK.

出版信息

J Physiol. 2009 Apr 1;587(Pt 7):1565-78. doi: 10.1113/jphysiol.2008.163683. Epub 2009 Feb 9.

Abstract

Adenosine is implicated in playing a role in blood flow responses to situations where O(2) delivery is reduced (hypoxia) or O(2) consumption is increased (exercise). Strong isometric contractions have been shown to limit vasodilatation, potentially leading to a greater mismatch between and than during twitch contractions. Thus, we hypothesized that adenosine makes a greater contribution to the hyperaemia associated with isometric tetanic than isometric twitch contractions and aimed to elucidate the adenosine-receptor subtypes involved in the response. In four groups of anaesthetized rats, arterial blood pressure (ABP), femoral blood flow (FBF) and tension in the extensor digitorum longus muscle were recorded; isometric twitch and tetanic contractions were evoked by stimulation of the sciatic nerve for 5 min at 4 Hz and 40 Hz, respectively. Groups 1 (twitch) and 3 (tetanic) were time controls for Groups 2 and 4, which received the selective A(2A)-receptor antagonist ZM241385 before the third and 8-sulphophenyltheophylline (8-SPT; a non-selective adenosine receptor antagonist) before the fourth contraction. Time controls showed consistent tension and hyperaemic responses: twitch and tetanic contractions were associated with a 3-fold and 2.5-fold increase in femoral vascular conductance (FVC, FBF/ABP) from baseline, respectively. ZM241385 reduced these responses by 14% and as much as 25%, respectively; 8-SPT had no further effect. We propose that, while twitch contractions produce a larger hyperaemia, adenosine acting via A(2A)-receptors plays a greater role in the hyperaemia associated with tetanic contraction. These results are considered in relation to the A(1)-receptor-mediated muscle dilatation evoked by systemic hypoxia.

摘要

腺苷在对氧气输送减少(缺氧)或氧气消耗增加(运动)的情况的血流反应中发挥作用。已表明强烈的等长收缩会限制血管舒张,这可能导致与单收缩相比,等长收缩期间供需之间的不匹配更大。因此,我们假设腺苷对等长强直收缩相关的充血的贡献比对等长单收缩的更大,并旨在阐明参与该反应的腺苷受体亚型。在四组麻醉大鼠中,记录动脉血压(ABP)、股血流量(FBF)和趾长伸肌的张力;分别通过以4 Hz和40 Hz刺激坐骨神经5分钟来诱发等长单收缩和强直收缩。第1组(单收缩)和第3组(强直收缩)分别是第2组和第4组的时间对照组,第2组在第三次收缩前接受选择性A(2A)受体拮抗剂ZM241385,第4组在第四次收缩前接受8-磺酰苯甲酰茶碱(8-SPT;一种非选择性腺苷受体拮抗剂)。时间对照组显示出一致的张力和充血反应:单收缩和强直收缩分别与股血管传导率(FVC,FBF/ABP)较基线增加3倍和2.5倍相关。ZM241385分别将这些反应降低了14%和多达25%;8-SPT没有进一步影响。我们提出,虽然单收缩产生更大的充血,但通过A(2A)受体起作用的腺苷在与强直收缩相关的充血中起更大作用。这些结果与全身缺氧诱发的A(1)受体介导的肌肉舒张有关。

相似文献

1
Elucidation in the rat of the role of adenosine and A2A-receptors in the hyperaemia of twitch and tetanic contractions.
J Physiol. 2009 Apr 1;587(Pt 7):1565-78. doi: 10.1113/jphysiol.2008.163683. Epub 2009 Feb 9.
2
Nitric oxide (NO) does not contribute to the generation or action of adenosine during exercise hyperaemia in rat hindlimb.
J Physiol. 2009 Apr 1;587(Pt 7):1579-91. doi: 10.1113/jphysiol.2008.163691. Epub 2009 Feb 9.
3
Ischaemic skeletal muscle hyperaemia in the anaesthetized cat: no contribution of A2A adenosine receptors.
J Physiol. 1997 Apr 1;500 ( Pt 1)(Pt 1):205-12. doi: 10.1113/jphysiol.1997.sp022010.
4
Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors.
J Physiol. 1999 Jan 1;514 ( Pt 1)(Pt 1):151-62. doi: 10.1111/j.1469-7793.1999.151af.x.
5
The role of the A(2A) adenosine receptor subtype in functional hyperaemia in the hindlimb of anaesthetized cats.
J Physiol. 1996 Apr 15;492 ( Pt 2)(Pt 2):495-503. doi: 10.1113/jphysiol.1996.sp021324.
6
Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia.
J Physiol. 1999 Jan 1;514 ( Pt 1)(Pt 1):163-75. doi: 10.1111/j.1469-7793.1999.163af.x.
7
Role of adenosine and its receptors in the vasodilatation induced in the cerebral cortex of the rat by systemic hypoxia.
J Physiol. 1998 Jun 1;509 ( Pt 2)(Pt 2):507-18. doi: 10.1111/j.1469-7793.1998.507bn.x.
8
Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.
Arch Phys Med Rehabil. 2003 Jul;84(7):982-7. doi: 10.1016/s0003-9993(03)00037-6.
10
Oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: role of adenosine.
J Physiol. 2001 Nov 1;536(Pt 3):927-35. doi: 10.1111/j.1469-7793.2001.00927.x.

引用本文的文献

1
Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats: Dependence on Receptor Subtype, Salt Diet, and Sex.
Hypertension. 2018 Aug;72(2):511-521. doi: 10.1161/HYPERTENSIONAHA.117.10765. Epub 2018 Jun 25.
3
Effects of modest hyperoxia and oral vitamin C on exercise hyperaemia and reactive hyperaemia in healthy young men.
Eur J Appl Physiol. 2015 Sep;115(9):1995-2006. doi: 10.1007/s00421-015-3182-0. Epub 2015 May 12.
5
Optimizing cardiovascular benefits of exercise: a review of rodent models.
Int J Angiol. 2013 Mar;22(1):13-22. doi: 10.1055/s-0033-1333867.
6
Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia.
Am J Physiol Regul Integr Comp Physiol. 2013 Aug 1;305(3):R281-90. doi: 10.1152/ajpregu.00189.2013. Epub 2013 Jun 12.
7
Contribution of non-endothelium-dependent substances to exercise hyperaemia: are they O(2) dependent?
J Physiol. 2012 Dec 15;590(24):6307-20. doi: 10.1113/jphysiol.2012.240721. Epub 2012 Oct 8.
8
Contribution of adenosine to compensatory dilation in hypoperfused contracting human muscles is independent of nitric oxide.
J Appl Physiol (1985). 2011 May;110(5):1181-9. doi: 10.1152/japplphysiol.00836.2010. Epub 2011 Feb 3.
9
Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.
J Physiol. 2010 Jan 15;588(Pt 2):373-85. doi: 10.1113/jphysiol.2009.180489. Epub 2009 Nov 30.
10
Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.
J Appl Physiol (1985). 2009 Oct;107(4):1128-37. doi: 10.1152/japplphysiol.00609.2009. Epub 2009 Aug 6.

本文引用的文献

1
Nitric oxide (NO) does not contribute to the generation or action of adenosine during exercise hyperaemia in rat hindlimb.
J Physiol. 2009 Apr 1;587(Pt 7):1579-91. doi: 10.1113/jphysiol.2008.163691. Epub 2009 Feb 9.
2
Skeletal muscle vasodilatation at the onset of exercise.
J Physiol. 2007 Sep 15;583(Pt 3):825-33. doi: 10.1113/jphysiol.2007.135673. Epub 2007 Jul 5.
3
The roles of adenosine and related substances in exercise hyperaemia.
J Physiol. 2007 Sep 15;583(Pt 3):835-45. doi: 10.1113/jphysiol.2007.136416. Epub 2007 Jul 5.
5
The blood flow through muscle during sustained contraction.
J Physiol. 1939 Nov 14;97(1):17-31. doi: 10.1113/jphysiol.1939.sp003789.
6
Influences of adenosine receptor antagonism on vasodilator responses to adenosine and exercise in adenosine responders and nonresponders.
J Appl Physiol (1985). 2006 Dec;101(6):1678-84. doi: 10.1152/japplphysiol.00546.2006. Epub 2006 Aug 31.
7
Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia.
J Appl Physiol (1985). 2006 Aug;101(2):492-9. doi: 10.1152/japplphysiol.00684.2005. Epub 2006 Apr 13.
8
Measurement of nitric oxide release evoked by systemic hypoxia and adenosine from rat skeletal muscle in vivo.
J Physiol. 2005 Nov 1;568(Pt 3):967-78. doi: 10.1113/jphysiol.2005.094854. Epub 2005 Aug 25.
9
Vasodilatory mechanisms in contracting skeletal muscle.
J Appl Physiol (1985). 2004 Jul;97(1):393-403. doi: 10.1152/japplphysiol.00179.2004.
10
Transients of the force and surface mechanomyogram during cat gastrocnemius tetanic stimulation.
Eur J Appl Physiol. 2003 Feb;88(6):601-6. doi: 10.1007/s00421-002-0765-3. Epub 2003 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验