Suppr超能文献

腺苷受体拮抗剂与低氧运动期间增强的血管舒张作用

Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

作者信息

Casey Darren P, Madery Brandon D, Pike Tasha L, Eisenach John H, Dietz Niki M, Joyner Michael J, Wilkins Brad W

机构信息

Department of Anesthesiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.

出版信息

J Appl Physiol (1985). 2009 Oct;107(4):1128-37. doi: 10.1152/japplphysiol.00609.2009. Epub 2009 Aug 6.

Abstract

We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

摘要

我们验证了这样一个假设

在低氧运动期间,腺苷有助于增强骨骼肌血管舒张。在不同的实验方案中,受试者在常氧和常碳酸血症性低氧(动脉血氧饱和度80%)状态下进行递增性有节奏的前臂运动(最大运动量的10%和20%)。在方案1(n = 8)中,受试者接受动脉内注射生理盐水(对照)和氨茶碱(腺苷受体拮抗剂)。在方案2(n = 10)中,受试者接受动脉内注射酚妥拉明(α-肾上腺素能受体拮抗剂)以及联合注射酚妥拉明和氨茶碱。根据前臂血流量(以ml/min为单位)和血压(以mmHg为单位)计算前臂血管传导率(FVC;单位为ml×min⁻¹·100 mmHg⁻¹)。在方案1中,低氧运动期间注射生理盐水时FVC的变化(ΔFVC;相对于常氧基线的变化)在10%和20%运动量时分别为172±29和314±34 ml×min⁻¹×100 mmHg⁻¹。在10%(190±29 ml×min⁻¹×100 mmHg⁻¹,P = 0.4)或20%(287±48 ml×min⁻¹×100 mmHg⁻¹,P = 0.3)运动量的低氧运动期间,注射氨茶碱对ΔFVC没有影响。在方案2中,注射酚妥拉明进行低氧运动时的ΔFVC在10%和20%运动量时分别为313±30和453±41 ml×min⁻¹×100 mmHg⁻¹。在联合注射酚妥拉明和氨茶碱进行10%(35

相似文献

1
Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.
J Appl Physiol (1985). 2009 Oct;107(4):1128-37. doi: 10.1152/japplphysiol.00609.2009. Epub 2009 Aug 6.
2
Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.
J Physiol. 2010 Jan 15;588(Pt 2):373-85. doi: 10.1113/jphysiol.2009.180489. Epub 2009 Nov 30.
3
Metabolic forearm vasodilation is enhanced following Bier block with phentolamine.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2289-95. doi: 10.1152/ajpheart.01422.2006. Epub 2007 Aug 3.
4
Influence of α-adrenergic vasoconstriction on the blunted skeletal muscle contraction-induced rapid vasodilation with aging.
J Appl Physiol (1985). 2012 Oct 15;113(8):1201-12. doi: 10.1152/japplphysiol.00734.2012. Epub 2012 Sep 6.
5
Ischemic exercise hyperemia in the human forearm: reproducibility and roles of adenosine and nitric oxide.
Eur J Appl Physiol. 2012 Jun;112(6):2065-72. doi: 10.1007/s00421-011-2035-8. Epub 2011 Sep 27.
7
Exercise intensity-dependent contribution of beta-adrenergic receptor-mediated vasodilatation in hypoxic humans.
J Physiol. 2008 Feb 15;586(4):1195-205. doi: 10.1113/jphysiol.2007.144113. Epub 2007 Nov 29.
8
Nitric oxide-mediated vasodilation becomes independent of beta-adrenergic receptor activation with increased intensity of hypoxic exercise.
J Appl Physiol (1985). 2011 Mar;110(3):687-94. doi: 10.1152/japplphysiol.00787.2010. Epub 2010 Dec 30.
10
Heterogeneous vascular responses to hypoxic forearm exercise in young and older adults.
Eur J Appl Physiol. 2012 Aug;112(8):3087-95. doi: 10.1007/s00421-011-2280-x. Epub 2011 Dec 25.

引用本文的文献

1
Sustained exercise hyperemia during prolonged adenosine infusion in humans.
Physiol Rep. 2019 Feb;7(4):e14009. doi: 10.14814/phy2.14009.
3
Impaired peripheral vasodilation during graded systemic hypoxia in healthy older adults: role of the sympathoadrenal system.
Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H832-H841. doi: 10.1152/ajpheart.00794.2016. Epub 2017 Feb 3.
4
Skeletal muscle vasodilation during systemic hypoxia in humans.
J Appl Physiol (1985). 2016 Jan 15;120(2):216-25. doi: 10.1152/japplphysiol.00256.2015. Epub 2015 May 28.
6
Acute dietary nitrate supplementation enhances compensatory vasodilation during hypoxic exercise in older adults.
J Appl Physiol (1985). 2015 Jan 15;118(2):178-86. doi: 10.1152/japplphysiol.00662.2014. Epub 2014 Nov 20.
7
Effect of vitamin C on hyperoxia-induced vasoconstriction in exercising skeletal muscle.
J Appl Physiol (1985). 2014 Nov 15;117(10):1207-11. doi: 10.1152/japplphysiol.00073.2014. Epub 2014 Sep 18.
8
Individual susceptibility to hypoperfusion and reductions in exercise performance when perfusion pressure is reduced: evidence for vasodilator phenotypes.
J Appl Physiol (1985). 2014 Aug 15;117(4):392-405. doi: 10.1152/japplphysiol.01155.2013. Epub 2014 Jun 26.
9
Neural control of blood flow during exercise in human metabolic syndrome.
Exp Physiol. 2014 Sep;99(9):1191-202. doi: 10.1113/expphysiol.2014.078048. Epub 2014 Mar 21.
10
Muscle blood flow, hypoxia, and hypoperfusion.
J Appl Physiol (1985). 2014 Apr 1;116(7):852-7. doi: 10.1152/japplphysiol.00620.2013. Epub 2013 Jul 25.

本文引用的文献

1
Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.
Hypertension. 2009 Jun;53(6):993-9. doi: 10.1161/HYPERTENSIONAHA.109.130880. Epub 2009 May 11.
2
Elucidation in the rat of the role of adenosine and A2A-receptors in the hyperaemia of twitch and tetanic contractions.
J Physiol. 2009 Apr 1;587(Pt 7):1565-78. doi: 10.1113/jphysiol.2008.163683. Epub 2009 Feb 9.
3
ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1140-8. doi: 10.1152/ajpregu.90822.2008. Epub 2008 Dec 31.
5
Exercise intensity-dependent contribution of beta-adrenergic receptor-mediated vasodilatation in hypoxic humans.
J Physiol. 2008 Feb 15;586(4):1195-205. doi: 10.1113/jphysiol.2007.144113. Epub 2007 Nov 29.
6
Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans.
J Appl Physiol (1985). 2007 Dec;103(6):2042-8. doi: 10.1152/japplphysiol.00567.2007. Epub 2007 Sep 20.
7
Influences of adenosine receptor antagonism on vasodilator responses to adenosine and exercise in adenosine responders and nonresponders.
J Appl Physiol (1985). 2006 Dec;101(6):1678-84. doi: 10.1152/japplphysiol.00546.2006. Epub 2006 Aug 31.
8
Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle.
J Appl Physiol (1985). 2006 Nov;101(5):1343-50. doi: 10.1152/japplphysiol.00487.2006. Epub 2006 Jun 29.
9
Circulating ATP-induced vasodilatation overrides sympathetic vasoconstrictor activity in human skeletal muscle.
J Physiol. 2004 Jul 1;558(Pt 1):351-65. doi: 10.1113/jphysiol.2004.063107. Epub 2004 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验