Casey Darren P, Madery Brandon D, Pike Tasha L, Eisenach John H, Dietz Niki M, Joyner Michael J, Wilkins Brad W
Department of Anesthesiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
J Appl Physiol (1985). 2009 Oct;107(4):1128-37. doi: 10.1152/japplphysiol.00609.2009. Epub 2009 Aug 6.
We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.
在低氧运动期间,腺苷有助于增强骨骼肌血管舒张。在不同的实验方案中,受试者在常氧和常碳酸血症性低氧(动脉血氧饱和度80%)状态下进行递增性有节奏的前臂运动(最大运动量的10%和20%)。在方案1(n = 8)中,受试者接受动脉内注射生理盐水(对照)和氨茶碱(腺苷受体拮抗剂)。在方案2(n = 10)中,受试者接受动脉内注射酚妥拉明(α-肾上腺素能受体拮抗剂)以及联合注射酚妥拉明和氨茶碱。根据前臂血流量(以ml/min为单位)和血压(以mmHg为单位)计算前臂血管传导率(FVC;单位为ml×min⁻¹·100 mmHg⁻¹)。在方案1中,低氧运动期间注射生理盐水时FVC的变化(ΔFVC;相对于常氧基线的变化)在10%和20%运动量时分别为172±29和314±34 ml×min⁻¹×100 mmHg⁻¹。在10%(190±29 ml×min⁻¹×100 mmHg⁻¹,P = 0.4)或20%(287±48 ml×min⁻¹×100 mmHg⁻¹,P = 0.3)运动量的低氧运动期间,注射氨茶碱对ΔFVC没有影响。在方案2中,注射酚妥拉明进行低氧运动时的ΔFVC在10%和20%运动量时分别为313±30和453±41 ml×min⁻¹×100 mmHg⁻¹。在联合注射酚妥拉明和氨茶碱进行10%(35