Lin Laura, Czerwinski Robert, Kelleher Kerry, Siegel Marshall M, Wu Paul, Kriz Ron, Aulabaugh Ann, Stahl Mark
Structural Biology and Computational Chemistry, Wyeth Research, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, USA.
Biochemistry. 2009 Mar 10;48(9):2021-32. doi: 10.1021/bi8019756.
Bruton's tyrosine kinase (Btk) plays a central role in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. A number of cell signaling studies clearly show that Btk is activated by Lyn, a Src family kinase, through phosphorylation on activation loop tyrosine 551 (Y(551)). However, the detailed molecular mechanism regulating Btk activation remains unclear. In particular, we do not fully understand the correlation of kinase activity with Y(551) phosphorylation, and the role of the noncatalytic domains of Btk in the activation process. Insect cell expressed full-length Btk is enzymatically active, but a truncated version of Btk, composed of only the kinase catalytic domain, is largely inactive. Further characterization of both forms of Btk by mass spectrometry showed partial phosphorylation of Y(551) of the full-length enzyme and none of the truncated kinase domain. To determine whether the lack of activity of the kinase domain was due to the absence of Y(551) phosphorylation, we developed an in vitro method to generate Y(551) monophosphorylated Btk kinase domain fragment using the Src family kinase Lyn. Detailed kinetic analyses demonstrated that the in vitro phosphorylated Btk kinase domain has a similar activity as the full-length enzyme while the unphosphorylated kinase domain has a very low k(cat) and is largely inactive. A divalent magnesium metal dependence study established that Btk requires a second magnesium ion for activity. Furthermore, our analysis revealed significant differences in the second metal-binding site among the kinase domain and the full-length enzyme that likely account for the difference in their catalytic profile. Taken together, our study provides important mechanistic insights into Btk kinase activity and phosphorylation-mediated regulation.
布鲁顿酪氨酸激酶(Btk)在调节B淋巴细胞系细胞存活、激活、增殖和分化的信号转导途径中起核心作用。多项细胞信号研究清楚表明,Btk由Src家族激酶Lyn通过激活环酪氨酸551(Y(551))磷酸化而被激活。然而,调节Btk激活的详细分子机制仍不清楚。特别是,我们尚未完全理解激酶活性与Y(551)磷酸化之间的相关性,以及Btk的非催化结构域在激活过程中的作用。昆虫细胞表达的全长Btk具有酶活性,但仅由激酶催化结构域组成的Btk截短版本在很大程度上无活性。通过质谱对两种形式的Btk进行进一步表征显示,全长酶的Y(551)存在部分磷酸化,而截短的激酶结构域则没有。为了确定激酶结构域缺乏活性是否是由于Y(551)未磷酸化,我们开发了一种体外方法,使用Src家族激酶Lyn生成Y(551)单磷酸化的Btk激酶结构域片段。详细的动力学分析表明,体外磷酸化的Btk激酶结构域与全长酶具有相似的活性,而未磷酸化的激酶结构域具有非常低的催化常数(k(cat)),并且在很大程度上无活性。一项二价镁离子依赖性研究确定,Btk的活性需要第二个镁离子。此外,我们的分析揭示了激酶结构域和全长酶之间第二个金属结合位点的显著差异,这可能解释了它们催化特性的差异。综上所述,我们的研究为Btk激酶活性和磷酸化介导的调节提供了重要的机制见解。