Suppr超能文献

T7 噬菌体 DNA 引发酶的 DNA 识别:锌结合域的结构-功能研究。

DNA recognition by the DNA primase of bacteriophage T7: a structure-function study of the zinc-binding domain.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Biochemistry. 2009 Mar 3;48(8):1763-73. doi: 10.1021/bi802123t.

Abstract

Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

摘要

噬菌体 T7 的 DNA 复制系统中,滞后链 DNA 合成的寡核苷酸引物的合成由基因 4 解旋酶-引物酶的引物酶结构域催化。引物酶由一个锌结合结构域(ZBD)和一个 RNA 聚合酶(RPD)结构域组成。ZBD 负责识别 ssDNA 模板中的特定序列,而催化活性则位于 RPD 中。ZBD 包含一个与四个半胱氨酸残基配位的锌离子。我们通过 X 射线吸收光谱和遗传修饰的引物酶的生化分析研究了锌离子的连接状态。参与催化的引物酶的 ZBD 对锌的配位具有相当大的不对称性,这可以通过锌的电子密度逐渐增加以及锌-硫键的延长来证明。野生型引物酶和从纯化的 ZBD 和 RPD 重新组装的引物酶在锌离子水平以及 ZBD 的构象上都有类似的电子变化。ZBD 中的单个氨基酸替换(H33A 和 C36S)导致锌结合和其结构完整性的丧失。因此,ZBD 中的锌可能充当电荷调制指示符,用于调节识别特定 DNA 序列所需的周围硫原子。

相似文献

2
The roles of tryptophans in primer synthesis by the DNA primase of bacteriophage T7.
J Biol Chem. 2012 Jul 6;287(28):23644-56. doi: 10.1074/jbc.M112.366096. Epub 2012 May 17.
3
Zinc-binding domain of the bacteriophage T7 DNA primase modulates binding to the DNA template.
J Biol Chem. 2012 Nov 9;287(46):39030-40. doi: 10.1074/jbc.M112.414151. Epub 2012 Sep 28.
4
Essential lysine residues in the RNA polymerase domain of the gene 4 primase-helicase of bacteriophage T7.
J Biol Chem. 2001 Dec 28;276(52):49419-26. doi: 10.1074/jbc.M108443200. Epub 2001 Oct 22.
5
Acidic residues in the nucleotide-binding site of the bacteriophage T7 DNA primase.
J Biol Chem. 2005 Jul 22;280(29):26984-91. doi: 10.1074/jbc.M504817200. Epub 2005 May 25.
7
Interaction of bacteriophage T7 gene 4 primase with its template recognition site.
J Biol Chem. 1999 Dec 10;274(50):35889-98. doi: 10.1074/jbc.274.50.35889.
8
Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7.
Nucleic Acids Res. 2010 Jul;38(13):4372-83. doi: 10.1093/nar/gkq205. Epub 2010 Mar 28.
10
A complex of the bacteriophage T7 primase-helicase and DNA polymerase directs primer utilization.
J Biol Chem. 2001 Jun 15;276(24):21809-20. doi: 10.1074/jbc.M101470200. Epub 2001 Mar 28.

引用本文的文献

3
DnaG Primase-A Target for the Development of Novel Antibacterial Agents.
Antibiotics (Basel). 2018 Aug 13;7(3):72. doi: 10.3390/antibiotics7030072.
4
Modulation of RNA primer formation by Mn(II)-substituted T7 DNA primase.
Sci Rep. 2017 Jul 19;7(1):5797. doi: 10.1038/s41598-017-05534-3.
8
Zinc-binding domain of the bacteriophage T7 DNA primase modulates binding to the DNA template.
J Biol Chem. 2012 Nov 9;287(46):39030-40. doi: 10.1074/jbc.M112.414151. Epub 2012 Sep 28.
9
Characterization of a nucleotide kinase encoded by bacteriophage T7.
J Biol Chem. 2012 Aug 24;287(35):29468-78. doi: 10.1074/jbc.M112.389619. Epub 2012 Jul 2.
10
The roles of tryptophans in primer synthesis by the DNA primase of bacteriophage T7.
J Biol Chem. 2012 Jul 6;287(28):23644-56. doi: 10.1074/jbc.M112.366096. Epub 2012 May 17.

本文引用的文献

1
Benchmarking pKa Prediction Methods for Residues in Proteins.
J Chem Theory Comput. 2008 Jun;4(6):951-66. doi: 10.1021/ct8000014.
2
Very fast prediction and rationalization of pKa values for protein-ligand complexes.
Proteins. 2008 Nov 15;73(3):765-83. doi: 10.1002/prot.22102.
3
Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
Proteins. 2007 Nov 15;69(3):466-75. doi: 10.1002/prot.21536.
4
A statistical approach to the prediction of pK(a) values in proteins.
Proteins. 2007 Oct 1;69(1):75-82. doi: 10.1002/prot.21478.
5
Zinc coordination environments in proteins as redox sensors and signal transducers.
Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1419-41. doi: 10.1089/ars.2006.8.1419.
6
Benchmarking pK(a) prediction.
BMC Biochem. 2006 Jun 2;7:18. doi: 10.1186/1471-2091-7-18.
7
Primer initiation and extension by T7 DNA primase.
EMBO J. 2006 May 17;25(10):2199-208. doi: 10.1038/sj.emboj.7601112. Epub 2006 Apr 27.
9
From alpha-helix to beta-sheet--a reversible metal ion induced peptide secondary structure switch.
Org Biomol Chem. 2005 Jul 21;3(14):2500-2. doi: 10.1039/b505979h. Epub 2005 Jun 16.
10
ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.
J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41. doi: 10.1107/S0909049505012719. Epub 2005 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验