Wang Fudong, Yu Heng, Jeong Sohee, Pietryga Jeffrey M, Hollingsworth Jennifer A, Gibbons Patrick C, Buhro William E
Department of Chemistry, Washington University, Saint Louis, Missouri 63130-4899, USA.
ACS Nano. 2008 Sep 23;2(9):1903-13. doi: 10.1021/nn800356z.
Colloidal InAs quantum wires having diameters in the range of 5-57 nm and narrow diameter distributions are grown from Bi nanoparticles by the solution-liquid-solid (SLS) mechanism. The diameter dependence of the effective band gaps (DeltaE(g)s) in the wires is determined from photoluminescence spectra and compared to the experimental results for InAs quantum dots and rods and to the predictions of various theoretical models. The DeltaE(g) values for InAs quantum dots and wires are found to scale linearly with inverse diameter (d(-1)), whereas the simplest confinement models predict that DeltaE(g) should scale with inverse-square diameter (d(-2)). The difference in the observed and predicted scaling dimension is attributed to conduction-band nonparabolicity induced by strong valence-band-conduction-band coupling in the narrow-gap InAs semiconductor.
通过溶液-液-固(SLS)机制,从铋纳米颗粒生长出直径在5-57纳米范围内且直径分布狭窄的胶体铟砷量子线。根据光致发光光谱确定量子线中有效带隙(ΔE(g))的直径依赖性,并将其与铟砷量子点和量子棒的实验结果以及各种理论模型的预测进行比较。发现铟砷量子点和量子线的ΔE(g)值与直径倒数(d(-1))呈线性比例关系,而最简单的限制模型预测ΔE(g)应与直径平方倒数(d(-2))成比例。观察到的和预测的比例维度之间的差异归因于窄带隙铟砷半导体中强价带-导带耦合引起的导带非抛物线性。