Holobar Ales, Farina Dario, Gazzoni Marco, Merletti Roberto, Zazula Damjan
Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia.
Clin Neurophysiol. 2009 Mar;120(3):551-62. doi: 10.1016/j.clinph.2008.10.160. Epub 2009 Feb 8.
We systematically tested the capability of the Convolution Kernel Compensation (CKC) method to identify motor unit (MU) discharge patterns from the simulated and experimental surface electromyogram (sEMG) during low-force contractions.
sEMG was detected with a grid of 13 x 5 electrodes. In simulated signals with 20 dB signal-to-noise ratio, 11+/-3 out of 63 concurrently active MUs were identified with sensitivity >95% in the estimation of their discharge times. In experimental signals recorded at 0-10% of the maximal force, the discharge patterns of (range) 11-19 MUs (abductor pollicis; n=8 subjects), 9-17 MUs (biceps brachii; n=2), 7-11 MUs (upper trapezius; n=2), and 6-10 MUs (vastus lateralis; n=2) were identified. In the abductor digiti minimi muscle of one subject, the decomposition results from concurrently recorded sEMG and intramuscular EMG (iEMG) were compared; the two approaches agreed on 98+/-1% of MU discharges.
It is possible to identify the discharge patterns of several MUs during low-force contractions from high-density sEMG.
sEMG can be used for the analysis of individual MUs when the application of needles is not desirable or in combination with iEMG to increase the number of sampled MUs.
我们系统地测试了卷积核补偿(CKC)方法在低强度收缩期间从模拟和实验表面肌电图(sEMG)中识别运动单位(MU)放电模式的能力。
使用13×5电极网格检测sEMG。在信噪比为20 dB的模拟信号中,63个同时活跃的运动单位中有11±3个在其放电时间估计中以>95%的灵敏度被识别。在最大力量的0-10%时记录的实验信号中,识别出了11-19个运动单位(拇展肌;n = 8名受试者)、9-17个运动单位(肱二头肌;n = 2)、7-11个运动单位(上斜方肌;n = 2)和6-10个运动单位(股外侧肌;n = 2)的放电模式。在一名受试者的小指展肌中,比较了同时记录的sEMG和肌内肌电图(iEMG)的分解结果;两种方法在98±1%的运动单位放电上达成一致。
从高密度sEMG中识别低强度收缩期间多个运动单位的放电模式是可能的。
当不希望使用针电极或与iEMG结合以增加采样运动单位数量时,sEMG可用于单个运动单位的分析。