Suppr超能文献

磁共振检测:芯片实验室的光谱学与成像

Magnetic resonance detection: spectroscopy and imaging of lab-on-a-chip.

作者信息

Harel Elad

机构信息

Department of Chemistry, University of California, Berkeley, CA 94720, USA.

出版信息

Lab Chip. 2009 Jan 7;9(1):17-23. doi: 10.1039/b807036a. Epub 2008 Oct 16.

Abstract

This mini-review is focused on the use of nuclear magnetic resonance (NMR) spectroscopy and imaging to study processes on lab-on-a-chip devices. NMR as an analytical tool is unmatched in its impact across nearly every area of science, from biochemistry and medicine to fundamental chemistry and physics. The controls available to the NMR spectroscopist or imager are vast, allowing for everything from high level structural determination of proteins in solution to detailed contrast imaging of organs in-vivo. Unfortunately, the weak nuclear magnetic moment of the nucleus requires that a very large number of spins be present for an inductively detectable signal, making the use of magnetic resonance as a detection modality for microfluidic devices especially challenging. Here we present recent efforts to combat the inherent sensitivity limitation of magnetic resonance for lab-on-a-chip applications. Principles and examples of different approaches are presented that highlight the flexibility and advantages of this type of detection modality.

摘要

本综述聚焦于利用核磁共振(NMR)光谱学和成像技术来研究芯片实验室设备上的过程。核磁共振作为一种分析工具,在从生物化学、医学到基础化学和物理学等几乎每一个科学领域都有着无与伦比的影响力。核磁共振光谱学家或成像人员可进行的控制手段非常多,从确定溶液中蛋白质的高级结构到对体内器官进行详细的对比成像,无所不能。不幸的是,原子核微弱的核磁矩要求存在大量的自旋才能产生可感应检测到的信号,这使得将磁共振用作微流控设备的检测方式极具挑战性。在此,我们介绍了近期为克服磁共振在芯片实验室应用中固有的灵敏度限制所做的努力。文中展示了不同方法的原理和示例,突出了这种检测方式的灵活性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验