Suppr超能文献

迈向核磁共振显微光谱学与显微成像技术

Towards nuclear magnetic resonance micro-spectroscopy and micro-imaging.

作者信息

Bentum P J M van, Janssen J W G, Kentgens A P M

机构信息

Department of Physical Chemistry, NSRIM Center, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.

出版信息

Analyst. 2004 Sep;129(9):793-803. doi: 10.1039/b404497p. Epub 2004 Aug 5.

Abstract

The first successful experiments demonstrating Nuclear Magnetic Resonance (NMR) were a spin-off from the development of electromagnetic technology and its introduction into civilian life in the late forties. It was soon discovered that NMR spectra held chemically relevant information making it useful as an analytical tool. By introducing a new way of detection, moving away from continuous wave spectroscopy, Fourier Transform NMR helped to overcome sensitivity problems and subsequently opened the way for multi-dimensional spectroscopy. As a result NMR has developed into one of the most powerful analysis techniques with widespread applications. Still sensitivity is a limiting factor in the applicability of NMR. Therefore we witness a renaissance of technique development in magnetic resonance striving to improve its receptiveness. This tutorial review introduces the efforts currently made in miniaturizing inductive detection by designing optimal radio-frequency microcoils. A second approach is to introduce a new way of detecting magnetic resonance signals by means of very sensitive micromechanical force detectors. This shows that the detection limits in terms of absolute sensitivity or imaging resolution are still open to significant improvements.

摘要

首次成功展示核磁共振(NMR)的实验是电磁技术发展及其在四十年代末引入民用生活的衍生成果。很快人们发现,NMR光谱包含与化学相关的信息,使其成为一种有用的分析工具。通过引入一种新的检测方式,即摆脱连续波光谱学,傅里叶变换NMR有助于克服灵敏度问题,并随后为多维光谱学开辟了道路。结果,NMR已发展成为应用广泛的最强大分析技术之一。然而,灵敏度仍然是NMR适用性的一个限制因素。因此,我们见证了磁共振技术发展的复兴,努力提高其灵敏度。本教程综述介绍了目前通过设计最佳射频微线圈来实现电感检测小型化所做的努力。第二种方法是通过非常灵敏的微机械力探测器引入一种检测磁共振信号的新方法。这表明,就绝对灵敏度或成像分辨率而言,检测限仍有显著提升空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验