Chokshi Trushal Vijaykumar, Ben-Yakar Adela, Chronis Nikos
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
Lab Chip. 2009 Jan 7;9(1):151-7. doi: 10.1039/b807345g. Epub 2008 Oct 21.
We present two microfluidic approaches for immobilizing the roundworm C. elegans on-chip. The first approach creates a CO(2) micro-environment while the second one utilizes a deformable PDMS membrane to mechanically restrict the worm's movement. An on-chip 'behavior' module was used to characterize the effect of these methods on the worm's locomotion pattern. Our results indicate that both methods are appropriate for the short-term (minutes) worm immobilization. The CO(2) method offers the additional advantages of long-term immobilization (1-2 hours) and reduced photobleaching, if fluorescent imaging during immobilization is required. We envision the use of these methods in a wide variety of biological studies in C. elegans, including cell developmental and neuronal regeneration studies.
我们展示了两种将线虫秀丽隐杆线虫固定在芯片上的微流控方法。第一种方法创建了一个二氧化碳微环境,而第二种方法利用可变形的聚二甲基硅氧烷(PDMS)膜来机械限制线虫的运动。一个芯片上的“行为”模块被用来表征这些方法对线虫运动模式的影响。我们的结果表明,这两种方法都适用于短期(几分钟)的线虫固定。如果在固定过程中需要进行荧光成像,二氧化碳方法还具有长期固定(1 - 2小时)和减少光漂白的额外优点。我们设想这些方法可用于秀丽隐杆线虫的各种生物学研究,包括细胞发育和神经元再生研究。