Siddiqui Ohidul, Hung H M James, O'Neill Robert
Office of Biostatistics, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, USA.
J Biopharm Stat. 2009;19(2):227-46. doi: 10.1080/10543400802609797.
In recent years, the use of the last observation carried forward (LOCF) approach in imputing missing data in clinical trials has been greatly criticized, and several likelihood-based modeling approaches are proposed to analyze such incomplete data. One of the proposed likelihood-based methods is the Mixed-Effect Model Repeated Measure (MMRM) model. To compare the performance of LOCF and MMRM approaches in analyzing incomplete data, two extensive simulation studies are conducted, and the empirical bias and Type I error rates associated with estimators and tests of treatment effects under three missing data paradigms are evaluated. The simulation studies demonstrate that LOCF analysis can lead to substantial biases in estimators of treatment effects and can greatly inflate Type I error rates of the statistical tests, whereas MMRM analysis on the available data leads to estimators with comparatively small bias, and controls Type I error rates at a nominal level in the presence of missing completely at random (MCAR) or missing at random (MAR) and some possibility of missing not at random (MNAR) data. In a sensitivity analysis of 48 clinical trial datasets obtained from 25 New Drug Applications (NDA) submissions of neurological and psychiatric drug products, MMRM analysis appears to be a superior approach in controlling Type I error rates and minimizing biases, as compared to LOCF ANCOVA analysis. In the exploratory analyses of the datasets, no clear evidence of the presence of MNAR missingness is found.
近年来,在临床试验中使用末次观察值结转(LOCF)方法来插补缺失数据受到了严厉批评,人们提出了几种基于似然性的建模方法来分析此类不完整数据。其中一种被提出的基于似然性的方法是混合效应模型重复测量(MMRM)模型。为了比较LOCF和MMRM方法在分析不完整数据方面的性能,进行了两项广泛的模拟研究,并评估了在三种缺失数据模式下与治疗效果估计量和检验相关的经验偏差和I型错误率。模拟研究表明,LOCF分析可能会导致治疗效果估计量出现实质性偏差,并会大幅提高统计检验的I型错误率,而对可用数据进行MMRM分析会使估计量的偏差相对较小,并且在存在完全随机缺失(MCAR)或随机缺失(MAR)以及一些非随机缺失(MNAR)数据可能性的情况下,能将I型错误率控制在名义水平。在对从25份神经和精神药品新药申请(NDA)提交材料中获得的48个临床试验数据集进行的敏感性分析中,与LOCF协方差分析相比,MMRM分析在控制I型错误率和最小化偏差方面似乎是一种更优的方法。在对数据集的探索性分析中,未发现存在MNAR缺失的明确证据。