de Los Campos G, Gianola D, Rosa G J M
Department of Animal Sciences, University of Wisconsin, Madison 53706, USA.
J Anim Sci. 2009 Jun;87(6):1883-7. doi: 10.2527/jas.2008-1259. Epub 2009 Feb 11.
Reproducing kernel Hilbert spaces (RKHS) methods are widely used for statistical learning in many areas of endeavor. Recently, these methods have been suggested as a way of incorporating dense markers into genetic models. This note argues that RKHS regression provides a general framework for genetic evaluation that can be used either for pedigree- or marker-based regressions and under any genetic model, infinitesimal or not, and additive or not. Most of the standard models for genetic evaluation, such as infinitesimal animal or sire models, and marker-assisted selection models appear as special cases of RKHS methods.
再生核希尔伯特空间(RKHS)方法在许多领域的统计学习中被广泛应用。最近,这些方法被提议作为一种将密集标记纳入遗传模型的方式。本文认为,RKHS回归为遗传评估提供了一个通用框架,可用于基于系谱或基于标记的回归,并且适用于任何遗传模型,无论是无穷小模型还是非无穷小模型,加法模型还是非加法模型。大多数遗传评估的标准模型,如无穷小动物或父系模型以及标记辅助选择模型,都表现为RKHS方法的特殊情况。