Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, and Department of Functional Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8787, Japan.
Inorg Chem. 2009 Mar 16;48(6):2614-25. doi: 10.1021/ic802123m.
To study the effect of axial ligands on the electronic structure and reactivity of compound I of peroxidases and catalases, oxoiron(IV) porphyrin pi-cation radical complexes with imidazole, 2-methylimidazole, 4(5)-methylimidazole, and 3-fluoro-4-nitrophenolate as the axial ligands were prepared by ozone oxidation of iron(III) complexes of 5,10,15,20-tetramesitylporphyrin (TMP) and 2,7,12,17-tetramethyl-3,8,13,18-tetramesitylporphyrin (TMTMP). These complexes were fully characterized by absorption, (1)H, (2)H, and (19)F NMR, electron paramagnetic resonance (EPR), and electrospray ionization mass spectrometry (ESI-MS) spectroscopy. The characteristic absorption peak of compound I at approximately 650 nm was found to be a good marker for estimation of the electron donor effect from the axial ligand. The axial ligand effect did not change the porphyrin pi-cation radical state, the a(2u) state of the TMP complexes, or the a(1u) radical state of both the TMTMP complexes and compound I. The ferryl iron and porphyrin pi-cation radical spins were effectively transferred into the axial ligands for the a(2u) complexes but not for the a(1u) complexes. Most importantly, the reactivity of the oxoiron(IV) porphyrin pi-cation radical complex was drastically increased by the imidazole and phenolate axial ligands. The reaction rate for cyclooctene epoxidation was increased 100- to 400-fold with axial coordination of imidazoles and phenolate. A similar increase was also observed for the oxidation of 1,4-cyclohexadiene,N,N-dimethyl-p-nitroaniline and hydrogen peroxide. These results suggest extreme enhancement of the reactivity of compound I by the axial ligand in heme enzymes. The functional role of axial ligands on the compound I in heme enzymes is discussed.
为了研究轴向配体对过氧化物酶和过氧化氢酶化合物 I 的电子结构和反应性的影响,通过臭氧氧化 5,10,15,20-四甲基卟啉(TMP)和 2,7,12,17-四甲基-3,8,13,18-四甲基卟啉(TMTMP)的铁(III)配合物,制备了具有咪唑、2-甲基咪唑、4(5)-甲基咪唑和 3-氟-4-硝基苯酚盐作为轴向配体的氧代铁(IV)卟啉 pi-阳离子自由基配合物。这些配合物通过吸收、(1)H、(2)H 和(19)F NMR、电子顺磁共振(EPR)和电喷雾电离质谱(ESI-MS)光谱得到了充分的表征。在大约 650nm 处发现化合物 I 的特征吸收峰是估计轴向配体给电子效应的良好标记。轴向配体效应并没有改变卟啉 pi-阳离子自由基态、TMP 配合物的 a(2u)态或 TMTMP 配合物和化合物 I 的 a(1u)自由基态。亚铁和卟啉 pi-阳离子自由基自旋有效地转移到 a(2u)配合物的轴向配体中,但不能转移到 a(1u)配合物中。最重要的是,氧代铁(IV)卟啉 pi-阳离子自由基配合物的反应性通过咪唑和酚盐轴向配体大大增加。轴向配位咪唑和酚盐使环辛烯环氧化的反应速率增加了 100-400 倍。类似的增加也观察到了 1,4-环己二烯、N,N-二甲基对硝基苯胺和过氧化氢的氧化。这些结果表明,轴向配体在血红素酶中极大地增强了化合物 I 的反应性。讨论了轴向配体在血红素酶中对化合物 I 的功能作用。