Chu Charleen T, Plowey Edward D, Dagda Ruben K, Hickey Robert W, Cherra Salvatore J, Clark Robert S B
Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine and Center for Neuroscience, Pittsburgh, Pennsylvania, USA.
Methods Enzymol. 2009;453:217-49. doi: 10.1016/S0076-6879(08)04011-1.
Recent advances indicate that maintaining a balanced level of autophagy is critically important for neuronal health and function. Pathologic dysregulation of macroautophagy has been implicated in synaptic dysfunction, cellular stress, and neuronal cell death. Autophagosomes and autolysosomes are induced in acute and chronic neurological disorders including stroke, brain trauma, neurotoxin injury, Parkinson's, Alzheimer's, Huntington's, motor neuron, prion, lysosomal storage, and other neurodegenerative diseases. Compared to other cell types, neuronal autophagy research presents particular challenges that may be addressed through still evolving techniques. Neuronal function depends upon maintenance of axons and dendrites (collectively known as neurites) that extend for great distances from the cell body. Both autophagy and mitochondrial content have been implicated in regulation of neurite length and function in physiological (plasticity) and pathological remodeling. Here, we highlight several molecular cell biological and imaging methods to study autophagy and mitophagy in neuritic and somatic compartments of differentiated neuronal cell lines and primary neuron cultures, using protocols developed in toxic and genetic models of parkinsonian neurodegeneration. In addition, mature neurons can be studied using in vivo protocols for modeling ischemic and traumatic injuries. Future challenges include application of automated computer-assisted image analysis to the axodendritic tree of individual neurons and improving methods for measuring neuronal autophagic flux.
近期进展表明,维持自噬的平衡水平对神经元健康和功能至关重要。巨自噬的病理性失调与突触功能障碍、细胞应激及神经元细胞死亡有关。自噬体和自溶酶体在急性和慢性神经疾病中被诱导产生,包括中风、脑外伤、神经毒素损伤、帕金森病、阿尔茨海默病、亨廷顿病、运动神经元病、朊病毒病、溶酶体贮积症及其他神经退行性疾病。与其他细胞类型相比,神经元自噬研究存在特殊挑战,可能需要通过不断发展的技术来解决。神经元功能依赖于轴突和树突(统称为神经突)的维持,这些神经突从细胞体延伸出很远的距离。自噬和线粒体含量均与神经突长度的调节以及生理(可塑性)和病理重塑中的功能有关。在此,我们重点介绍几种分子细胞生物学和成像方法,以研究分化的神经元细胞系和原代神经元培养物的神经突和体细胞区室中的自噬和线粒体自噬,使用在帕金森病神经退行性变的毒性和遗传模型中开发的方案。此外,可使用体内方案对成熟神经元进行缺血和创伤性损伤建模研究。未来的挑战包括将自动化计算机辅助图像分析应用于单个神经元的轴突树突,并改进测量神经元自噬通量的方法。