Mehrotra Sumit, Lee Ilsoon, Chan Christina
Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
Acta Biomater. 2009 Jun;5(5):1474-88. doi: 10.1016/j.actbio.2009.01.004. Epub 2009 Jan 19.
Gene delivery from a substrate depends, in part, on the vector-nucleic acid complex that is bound to the surface and the cell adhesive properties of the surface. Here, we present a method to deliver patterns of small interfering RNA (siRNA) that capitalize on a forward transfection method (transfection by introducing siRNA transfection reagent complexes onto plated cells); herein denoted as multilayer mediated forward transfection (MFT). This method separates the substrate-mediated delivery from the cell adhesive properties of the surface. pH responsive layer-by-layer (LbL) assembled multilayers were used as the delivery platform and microcontact printing technique (microCP) was used to pattern nanoparticles of transfection reagent-siRNA complexes onto degradable multilayers. Efficient MFT depend on optimal formulation of the nanoparticles. 25 kDa linear polyethylenimine (LPEI) was optimized as the siRNA transfection reagent for normal forward transfection (NFT) of the nanoparticles. A broad range of LPEI-siRNA nitrogen/phosphate (N/P) ratios (ranging from 5 to 90) was evaluated for the relative amounts of siRNA incorporated into the nanoparticles, nanoparticle size and NFT efficiencies. All the siRNA was incorporated into the nanoparticles at N/P ratio near 90. Increasing the amount of siRNA incorporated into the nanoparticles, with increasing N/P ratio correlated with a linear blue shift in the ultraviolet/visible (UV/vis) absorbance spectrum of the LPEI-siRNA nanoparticles. NFT efficiency greater than 80% was achieved with minimal cytotoxicity at N/P ratio of 30 and siRNA concentration of 200 nM. Similarly, MFT efficiency 60% was achieved for LPEI-siRNA nanoparticles at N/P ratios greater than 30.
从底物进行基因传递部分取决于结合在表面的载体 - 核酸复合物以及表面的细胞黏附特性。在此,我们提出一种递送小干扰RNA(siRNA)模式的方法,该方法利用正向转染法(通过将siRNA转染试剂复合物引入已铺板的细胞进行转染);在此称为多层介导正向转染(MFT)。此方法将底物介导的传递与表面的细胞黏附特性分离开来。pH响应逐层(LbL)组装的多层膜用作递送平台,微接触印刷技术(microCP)用于将转染试剂 - siRNA复合物的纳米颗粒图案化到可降解的多层膜上。高效的MFT取决于纳米颗粒的最佳配方。25 kDa线性聚乙烯亚胺(LPEI)被优化为纳米颗粒正常正向转染(NFT)的siRNA转染试剂。评估了广泛的LPEI - siRNA氮/磷(N/P)比(范围从5到90),以确定掺入纳米颗粒中的siRNA的相对量、纳米颗粒大小和NFT效率。在N/P比接近90时,所有siRNA都掺入了纳米颗粒中。随着N/P比增加,掺入纳米颗粒中的siRNA量增加,这与LPEI - siRNA纳米颗粒的紫外/可见(UV/vis)吸收光谱中的线性蓝移相关。在N/P比为30且siRNA浓度为200 nM时,NFT效率大于80%,且细胞毒性最小。同样,对于N/P比大于30的LPEI - siRNA纳米颗粒,MFT效率达到60%。