Yamniuk Aaron P, Ishida Hiroaki, Lippert Dustin, Vogel Hans J
Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
Biophys J. 2009 Feb 18;96(4):1495-507. doi: 10.1016/j.bpj.2008.10.060.
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19-26 degrees C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding.
钙(Ca2+)调节蛋白钙调蛋白(CaM)中的甲硫氨酸残基在结构和功能上都很重要。它们埋藏在脱辅基CaM的N端和C端结构域内,但在Ca2+-CaM中会暴露于溶剂中,在那里它们与众多靶蛋白相互作用。先前的结构研究表明,将甲硫氨酸替换为非编码氨基酸硒代甲硫氨酸、乙硫氨酸或正亮氨酸,或突变为亮氨酸,不会影响CaM的主链结构。在这里,我们使用差示扫描量热法表明,这些替换增强了两个结构域的稳定性,在脱辅基C端结构域中,亮氨酸或正亮氨酸替换导致的熔解温度升高幅度最大(19-26摄氏度)。核磁共振光谱实验还揭示了亮氨酸取代的脱辅基C端结构域中一个缓慢构象交换过程的丧失。此外,等温滴定量热法实验揭示了靶标与脱辅基CaM和Ca2+-CaM结合时焓和熵的显著变化,但由于焓-熵补偿,结合自由能基本未受影响。总的来说,这些结果表明,由于蛋白质的结构可塑性,非编码和编码的甲硫氨酸替换在CaM中都能被容纳。然而,侧链堆积和动力学的调整导致蛋白质稳定性和靶标结合热力学存在显著差异。