Casals Ferran, Ferrer-Admetlla Anna, Sikora Martin, Ramírez-Soriano Anna, Marquès-Bonet Tomàs, Despiau Stéphanie, Roubinet Francis, Calafell Francesc, Bertranpetit Jaume, Blancher Antoine
Institut de Biologia Evolutiva (CSIC-UPF), CEXS-UPF-PRBB, Barcelona, Catalonia, Spain.
Glycobiology. 2009 Jun;19(6):583-91. doi: 10.1093/glycob/cwp017. Epub 2009 Feb 13.
The GT6 glycosyltransferases gene family, that includes the ABO blood group, shows a complex evolution pattern, with multiple events of gain and loss in different mammal species. In humans the ABO gene is considered the sole functional member although the O allele is null and is fixed in certain populations. Here, we analyze the human GT6 pseudogene sequences (Forssman, IGB3, GGTA1, GT6m5, GT6m6, and GT6m7) from an evolutionary perspective, by the study of (i) their diversity levels in populations through the resequencing analysis of European and African individuals; (ii) the interpopulation differentiation, with genotyping data from a survey of populations covering most of human genetic diversity; and (iii) the interespecific divergence, by the comparison of the human and some other primate species sequences. Since pseudogenes are expected to evolve under neutrality, they should show an evolutionary pattern different to that of functional sequences, with higher levels of diversity as well as a ratio of nonsynonymous to synonymous changes close to 1. We describe some departures from these expectations, including selection for inactivation in IGB3, GGTA1, and the interesting case of FS (Forssman) with a probable shift of its initial function in the primate lineage, which put it apart from a pure neutral pseudogene. These results suggest that some of these GT6 human pseudogenes may still be functional and retain some valuable unknown function in humans, in some case even at the protein level. The evolutionary analysis of all members of the GT6 family in humans allows an insight into their functional history, a process likely due to the interaction of the host glycans that they synthesize with pathogens; the past process that can be unraveled through the footprints left by natural selection in the extant genome variation.
包含ABO血型的GT6糖基转移酶基因家族呈现出复杂的进化模式,在不同哺乳动物物种中存在多次获得和丢失事件。在人类中,ABO基因被认为是唯一的功能成员,尽管O等位基因无功能且在某些人群中固定存在。在此,我们从进化角度分析人类GT6假基因序列(福斯曼、IGB3、GGTA1、GT6m5、GT6m6和GT6m7),通过研究:(i)通过对欧洲和非洲个体的重测序分析,了解它们在人群中的多样性水平;(ii)利用涵盖大部分人类遗传多样性的人群调查的基因分型数据,分析群体间分化;(iii)通过比较人类和其他一些灵长类物种的序列,分析种间差异。由于假基因预计在中性条件下进化,它们应呈现出与功能序列不同的进化模式,具有更高的多样性水平以及非同义与同义变化的比率接近1。我们描述了一些与这些预期的偏差,包括IGB3、GGTA1中失活的选择,以及FS(福斯曼)这一有趣案例,其在灵长类谱系中初始功能可能发生了转变,这使其有别于纯粹的中性假基因。这些结果表明,这些人类GT6假基因中的一些可能仍具有功能,并在人类中保留了一些有价值的未知功能,在某些情况下甚至在蛋白质水平上也是如此。对人类GT6家族所有成员的进化分析有助于深入了解它们的功能历史,这一过程可能是由于它们合成的宿主聚糖与病原体相互作用所致;过去的过程可以通过现存基因组变异中自然选择留下的痕迹来揭示。