Li Jiahan, Li Qin, Hou Wei, Han Kun, Li Yao, Wu Song, Li Yanchun, Wu Rongling
Department of Statistics, University of Florida, Gainesville, FL 32611, USA.
Genet Res (Camb). 2009 Feb;91(1):9-21. doi: 10.1017/S0016672308009932.
A linkage-linkage disequilibrium map that describes the pattern and extent of linkage dis-equilibrium (LD) decay with genomic distance has now emerged as a viable tool to unravel the genetic structure of population differentiation and fine-map genes for complex traits. The prerequisite for constructing such a map is the simultaneous estimation of the linkage and LD between different loci. Here, we develop a computational algorithm for simultaneously estimating the recombination fraction and LD in a natural outcrossing population with multilocus marker data, which are often estimated separately in most molecular genetic studies. The algorithm is founded on a commonly used progeny test with open-pollinated offspring sampled from a natural population. The information about LD is reflected in the co-segregation of alleles at different loci among parents in the population. Open mating of parents will reveal the genetic linkage of alleles during meiosis. The algorithm was constructed within the polynomial-based mixture framework and implemented with the Expectation-Maximization (EM) algorithm. The by-product of the derivation of this algorithm is the estimation of outcrossing rate, a parameter useful to explore the genetic diversity of the population. We performed computer simulation to investigate the influences of different sampling strategies and different values of parameters on parameter estimation. By providing a number of testable hypotheses about population genetic parameters, this algorithmic model will open a broad gateway to understand the genetic structure and dynamics of an outcrossing population under natural selection.
一张描述连锁不平衡(LD)随基因组距离衰减的模式和程度的连锁-连锁不平衡图谱,现已成为揭示群体分化的遗传结构以及精细定位复杂性状基因的可行工具。构建这样一张图谱的前提是同时估计不同位点之间的连锁和LD。在此,我们开发了一种计算算法,用于利用多位点标记数据同时估计自然异交群体中的重组率和LD,而在大多数分子遗传学研究中,这两个参数通常是分别估计的。该算法基于一种常用的子代检测方法,即从自然群体中采集开放授粉的后代样本。LD的信息反映在群体中亲本不同位点等位基因的共分离情况中。亲本的开放交配将揭示减数分裂过程中等位基因的遗传连锁。该算法是在基于多项式的混合框架内构建的,并通过期望最大化(EM)算法实现。该算法推导的副产品是异交率的估计,这是一个有助于探索群体遗传多样性的参数。我们进行了计算机模拟来研究不同采样策略以及不同参数值对参数估计的影响。通过提供许多关于群体遗传参数的可检验假设,这个算法模型将为理解自然选择下异交群体的遗传结构和动态打开一扇广阔的大门。