Perrin Lionel, Sarazin Yann, Kirillov Evgueni, Carpentier Jean-François, Maron Laurent
LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS135 avenue de Rangueil, 31077 Toulouse, France.
Chemistry. 2009;15(15):3773-83. doi: 10.1002/chem.200802036.
The mechanism of the initiation step of styrene polymerization promoted by single-component ansa-lanthanidocene catalysts [{Cp'XMe(2)Flu'}Ln(R)(ether)(n)] (Cp' = C(5)H(4); Flu' = 9-C(13)H(8); X = C or Si; R = allyl = CH(2)CHCH(2) or alkyl = CH(2)SiMe(3); ether = THF or Et(2)O, n = 0,1) has been studied from a combined experimental/theoretical perspective. First, detailed (13)C NMR studies conducted on syndiotactic oligostyrenes prepared by chain-growth polymerization with [{C(5)H(4)CMe(2)Flu'}Nd(eta(3)-1,3-C(3)H(3)(SiMe(3))(2))]/Mg(nBu)(2) (1:50) have shown that the insertion of styrene in these lanthanidocene systems proceeds selectively in a secondary (2,1) fashion, both at the initiation and propagation steps. Next, DFT studies of styrene insertion have been carried out on three model compounds, [{Cp'CMe(2)Flu'}Eu(eta(3)-allyl)(thf)] (I), [{Cp'SiMe(2)Flu'}Eu(eta(3)-allyl)(thf)] (II), and [{Cp'CMe(2)Flu'}Eu(eta(1)-CH(2)SiMe(3))(thf)] (III), in order to rationalize the influence of the ansa bridge (CMe(2) vs. SiMe(2)) and that of the "active" R ligand (eta(3)-allyl vs. eta(1)-CH(2)SiMe(3)), previously noticed in styrene polymerization experiments. Dissociation of the THF molecule in precursor I appears not to be a rate-limiting step and proceeds readily. The steric hindrance between the phenyl ring of the incoming styrene monomer and the ancillary ligands (Cp', Flu'), induced by the change of either the bridge or the "active" R ligand, is proposed to control the reactivity of the complexes. In all cases, orientation of the styrene phenyl ring toward the most sterically opened Cp' ligand (as compared to Flu') and 2,1-insertion of styrene have been found to be the most thermodynamically and kinetically favorable pathway. Also, in all cases, insertion of the first styrene unit proceeds directly in the eta(3)-coordinated allyl group. The lack of activity of the ansa-dimethylsilylene allyl complex and of the ansa-isopropylidene alkyl complex appears to be mainly due to the thermodynamics of the insertion reaction rather than the height of the activation barrier.
从实验与理论相结合的角度,对单组分桥联茂金属催化剂[{Cp'XMe(2)Flu'}Ln(R)(ether)(n)](Cp' = C(5)H(4);Flu' = 9-C(13)H(8);X = C或Si;R = 烯丙基 = CH(2)CHCH(2)或烷基 = CH(2)SiMe(3);ether = THF或Et(2)O,n = 0,1)促进苯乙烯聚合引发步骤的机理进行了研究。首先,对用[{C(5)H(4)CMe(2)Flu'}Nd(η(3)-1,3-C(3)H(3)(SiMe(3))(2))]/Mg(nBu)(2)(1:50)通过链增长聚合制备的间规低聚苯乙烯进行了详细的(13)C NMR研究,结果表明,在这些茂金属体系中,苯乙烯的插入在引发和增长步骤均以二级(2,1)方式选择性进行。接下来,对三种模型化合物[{Cp'CMe(2)Flu'}Eu(η(3)-烯丙基)(thf)](I)、[{Cp'SiMe(2)Flu'}Eu(η(3)-烯丙基)(thf)](II)和[{Cp'CMe(2)Flu'}Eu(η(1)-CH(2)SiMe(3))(thf)](III)进行了苯乙烯插入的DFT研究,以阐明桥联(CMe(2)对SiMe(2))和“活性”R配体(η(3)-烯丙基对η(1)-CH(2)SiMe(3))的影响,这在苯乙烯聚合实验中已被注意到。前体I中THF分子的解离似乎不是限速步骤,且易于进行。提出由桥联或“活性”R配体的变化引起的进入苯乙烯单体苯环与辅助配体(Cp'、Flu')之间的空间位阻控制了配合物的反应性。在所有情况下,已发现苯乙烯苯环朝向空间位阻最大的Cp'配体(与Flu'相比)的取向以及苯乙烯的2,1-插入是最热力学和动力学有利的途径。此外,在所有情况下,第一个苯乙烯单元的插入直接在η(3)-配位的烯丙基基团中进行。桥联二甲基硅亚烷基烯丙基配合物和桥联异亚丙基烷基配合物缺乏活性似乎主要是由于插入反应的热力学而非活化能垒的高度。