Departamento de Química Inorgánica y Analítica, Universidad Rey Juan Carlos, Móstoles-28933-Madrid, Spain.
Inorg Chem. 2010 Mar 15;49(6):2859-71. doi: 10.1021/ic902399r.
The reaction of the hybrid scorpionate/cyclopentadienyl lithium salt [Li(bpzcp)(THF)] [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] with 1 equiv of RMgCl proceeds cleanly to give very high yields of the corresponding monoalkyl kappa(2)-NN-eta(5)-C(5)H(4) magnesium complexes [Mg(R)(kappa(2)-eta(5)-bpzcp)] (R = Me 1, Et 2, (n)Bu 3, (t)Bu 4, CH(2)SiMe(3) 5, CH(2)Ph 6). Hydrolysis of the hybrid lithium salt [Li(bpzcp)(THF)] with NH(4)Cl/H(2)O in ether cleanly affords the two previously described regioisomers: (bpzcpH) 1-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (a) and 2-[2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl]-1,3-cyclopentadiene (b). Subsequent reaction of the bpzcpH hybrid ligand with ZnR(2) quantitatively yields the monoalkyl kappa(2)-NN-eta(1)(pi)-C(5)H(4) zinc complexes [Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = Me 7, Et 8, (t)Bu 9, CH(2)SiMe(3) 10). Additionally, magnesium alkyls 1, 2, 4, and 5 can act as excellent cyclopentadienyl and alkyl transfers to the zinc metal center and yield zinc alkyls 7-10 in good yields. The single-crystal X-ray structures of the derivatives 4, 5, 7, and 10 confirm a 4-coordinative structure with the metal center in a distorted tetrahedral geometry. Interestingly, whereas alkyl magnesium derivatives 4 and 5 present a eta(5) coordination mode for the cyclopentadienyl fragment, zinc derivatives 7 and 10 feature a peripheral eta(1)(pi) arrangement in the solid state. Furthermore, the reaction of the hybrid lithium salt [Li(bpzcp)(THF)] with 1 equiv of ZnCl(2) in tetrahydrofuran (THF) affords very high yields of the chloride complex [ZnCl{kappa(2)-eta(1)(pi)-bpzcp}] (11). Compound 11 was used as a convenient starting material for the synthesis of the aromatic amide zinc compound [Zn(NH-4-MeC(6)H(4)){kappa(2)-eta(1)(pi)-bpzcp}] (12), by reaction with the corresponding aromatic primary amide lithium salt. Alternatively, aliphatic amide and alkoxide derivatives were only accessible by protonolysis of the bis(amide) complexes [M{N(SiMe(3))(2)}(2)] (M = Mg, Zn) and the mixed ligand complex [EtZnOAr)] with the hybrid ligand bpzcpH to afford [Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = N(SiMe(3))(2) 13, R = 2,4,6-Me(3)C(6)H(2)O 14) and [Mg{N(SiMe(3))(2)}(kappa(2)-eta(5)-bpzcp)] (15). Finally, alkyl and alkoxide-containing complexes 1-10 and 14 can act as highly effective single-component living initiators for the ring-opening polymerization of epsilon-caprolactone and lactides over a wide range of temperatures. Epsilon-caprolactone is polymerized within minutes to give high molecular weight polymers with medium-broad polydispersities (M(n) > 10(5), M(w)/M(n) = 1.45). Lactide afforded poly(lactide) materials with medium molecular weights and polydispersities as narrow as M(w)/M(n) = 1.02. Additionally, polymerization of L-lactide occurred without racemization in the propagation process and offered highly crystalline, isotactic poly(L-lactides) with very high melting temperatures (T(m) = 165 degrees C). Microstructural analysis of poly(rac-lactide) by (1)H NMR spectroscopy revealed that propagations occur without appreciable levels of stereoselectivity. Polymer end group analysis showed that the polymerization process is initiated by alkyl transfer to the monomer.
混合螺环膦/环戊二烯基锂盐[Li(bpzcp)(THF)] [bpzcp = 2,2-双(3,5-二甲基吡唑-1-基)-1,1-二苯基乙基环戊二烯基]与 1 当量的 RMgCl 反应干净利落,以高收率得到相应的单烷基 kappa(2)-NN-eta(5)-C(5)H(4)镁配合物[Mg(R)(kappa(2)-eta(5)-bpzcp)] (R = Me 1, Et 2, (n)Bu 3, (t)Bu 4, CH(2)SiMe(3) 5, CH(2)Ph 6)。混合锂盐[Li(bpzcp)(THF)]与 NH(4)Cl/H(2)O 在醚中水解干净利落,得到先前描述的两种区域异构体:(bpzcpH) 1-[2,2-双(3,5-二甲基吡唑-1-基)-1,1-二苯基乙基]-1,3-环戊二烯(a)和 2-[2,2-双(3,5-二甲基吡唑-1-基)-1,1-二苯基乙基]-1,3-环戊二烯(b)。随后,bpzcpH 混合配体与 ZnR(2)反应定量生成单烷基 kappa(2)-NN-eta(1)(pi)-C(5)H(4)锌配合物[Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = Me 7, Et 8, (t)Bu 9, CH(2)SiMe(3) 10)。此外,镁烷基 1、2、4 和 5 可以作为出色的环戊二烯基和烷基转移到锌金属中心,并以良好的收率得到锌烷基 7-10。衍生物 4、5、7 和 10 的单晶 X 射线结构证实了金属中心具有扭曲四面体几何形状的 4 配位结构。有趣的是,尽管烷基镁衍生物 4 和 5 呈现出环戊二烯基片段的 eta(5)配位模式,但锌衍生物 7 和 10 在固态中呈现出外围 eta(1)(pi)排列。此外,混合锂盐[Li(bpzcp)(THF)]与 1 当量的 ZnCl(2)在四氢呋喃(THF)中的反应以高收率得到氯化物配合物[ZnCl{kappa(2)-eta(1)(pi)-bpzcp}] (11)。化合物 11 可用作方便的起始原料,通过与相应的芳香族伯酰胺锂盐反应,合成芳香族酰胺锌化合物[Zn(NH-4-MeC(6)H(4)){kappa(2)-eta(1)(pi)-bpzcp}] (12)。或者,通过质子解双酰胺配合物[M{N(SiMe(3))(2)}(2)] (M = Mg,Zn)和混合配体配合物[EtZnOAr)]与混合配体 bpzcpH,仅可获得脂族酰胺和烷氧化物衍生物,以得到[Zn(R){kappa(2)-eta(1)(pi)-bpzcp}] (R = N(SiMe(3))(2) 13,R = 2,4,6-Me(3)C(6)H(2)O 14)和[Mg{N(SiMe(3))(2)}(kappa(2)-eta(5)-bpzcp)] (15)。最后,含烷基和烷氧基的配合物 1-10 和 14 可以作为高效的单组分活性引发剂,在很宽的温度范围内引发 epsilon-己内酯和丙交酯的开环聚合。epsilon-己内酯在几分钟内聚合,得到具有中等宽分子量分布的高分子量聚合物(M(n) > 10(5),M(w)/M(n) = 1.45)。丙交酯得到具有中等分子量和低至 M(w)/M(n) = 1.02 的分子量分布的聚丙交酯材料。此外,在聚合过程中 L-丙交酯没有发生外消旋化,得到具有非常高的熔点(T(m) = 165 摄氏度)的高结晶、全同立构聚(L-丙交酯)。通过(1)H NMR 光谱对聚(rac-丙交酯)的微观结构分析表明,在聚合过程中没有明显的立体选择性。聚合物端基分析表明,聚合过程是通过烷基转移到单体上引发的。