Suppr超能文献

存在删失生存反应时微阵列数据的降维:一项模拟研究

Dimension reduction of microarray data in the presence of a censored survival response: a simulation study.

作者信息

Nguyen Tuan S, Rojo Javier

机构信息

Rice University.

出版信息

Stat Appl Genet Mol Biol. 2009;8(1):Article 4. doi: 10.2202/1544-6115.1395. Epub 2009 Jan 21.

Abstract

An important aspect of microarray studies involves the prediction of patient survival based on their gene expression levels. To cope with the high dimensionality of the microarray gene expression data, it is customary to first reduce the dimension of the gene expression data via dimension reduction methods, and then use the Cox proportional hazards model to predict patient survival. In this paper, we propose a variant of Partial Least Squares, denoted as Rank-based Modified Partial Least Squares (RMPLS), that is insensitive to outlying values of both the response and the gene expressions. We assess the performance of RMPLS and several dimension reduction methods using a simulation model for gene expression data with a censored response. In particular, Principal Component Analysis (PCA), modified Partial Least Squares (MPLS), RMPLS, Sliced Inverse Regression (SIR), Correlation Principal Component Regression (CPCR), Supervised Principal Component Regression (SPCR) and Univariate Selection (UNIV) are compared in terms of mean squared error of the estimated survival function and the estimated coefficients of the covariates, and in terms of the bias of the estimated survival function. It turns out that RMPLS outperforms all other methods in terms of the mean squared error and the bias of the survival function in the presence of outliers in the response. In addition, RMPLS is comparable to MPLS in the absence of outliers. In this setting, both RMPLS and MPLS outperform all other methods considered in this study in terms of mean squared error and bias of the estimated survival function.

摘要

微阵列研究的一个重要方面涉及根据患者的基因表达水平预测其生存情况。为了应对微阵列基因表达数据的高维度问题,通常首先通过降维方法降低基因表达数据的维度,然后使用Cox比例风险模型预测患者生存情况。在本文中,我们提出了偏最小二乘法的一种变体,称为基于秩的修正偏最小二乘法(RMPLS),它对响应变量和基因表达的异常值均不敏感。我们使用具有删失响应的基因表达数据模拟模型评估了RMPLS和几种降维方法的性能。具体而言,比较了主成分分析(PCA)、修正偏最小二乘法(MPLS)、RMPLS、切片逆回归(SIR)、相关主成分回归(CPCR)、监督主成分回归(SPCR)和单变量选择(UNIV)在估计生存函数的均方误差、协变量估计系数以及估计生存函数偏差方面的表现。结果表明,在响应变量存在异常值的情况下,就生存函数的均方误差和偏差而言,RMPLS优于所有其他方法。此外,在不存在异常值的情况下,RMPLS与MPLS相当。在这种情况下,就估计生存函数的均方误差和偏差而言,RMPLS和MPLS均优于本研究中考虑的所有其他方法。

相似文献

1
Dimension reduction of microarray data in the presence of a censored survival response: a simulation study.
Stat Appl Genet Mol Biol. 2009;8(1):Article 4. doi: 10.2202/1544-6115.1395. Epub 2009 Jan 21.
2
Partial least squares dimension reduction for microarray gene expression data with a censored response.
Math Biosci. 2005 Jan;193(1):119-37. doi: 10.1016/j.mbs.2004.10.007. Epub 2005 Jan 22.
3
Dimension reduction of microarray gene expression data: the accelerated failure time model.
J Bioinform Comput Biol. 2009 Dec;7(6):939-54. doi: 10.1142/s0219720009004412.
4
Partial least squares proportional hazard regression for application to DNA microarray survival data.
Bioinformatics. 2002 Dec;18(12):1625-32. doi: 10.1093/bioinformatics/18.12.1625.
5
Dimension reduction for classification with gene expression microarray data.
Stat Appl Genet Mol Biol. 2006;5:Article6. doi: 10.2202/1544-6115.1147. Epub 2006 Feb 24.
6
Supervised wavelet method to predict patient survival from gene expression data.
ScientificWorldJournal. 2014;2014:618412. doi: 10.1155/2014/618412. Epub 2014 Nov 3.
7
Partial least squares Cox regression for genome-wide data.
Lifetime Data Anal. 2008 Jun;14(2):179-95. doi: 10.1007/s10985-007-9076-7.
8
Tumor classification by partial least squares using microarray gene expression data.
Bioinformatics. 2002 Jan;18(1):39-50. doi: 10.1093/bioinformatics/18.1.39.
9
Predicting survival from microarray data--a comparative study.
Bioinformatics. 2007 Aug 15;23(16):2080-7. doi: 10.1093/bioinformatics/btm305. Epub 2007 Jun 6.
10
Cox survival analysis of microarray gene expression data using correlation principal component regression.
Stat Appl Genet Mol Biol. 2007;6:Article16. doi: 10.2202/1544-6115.1153. Epub 2007 May 29.

引用本文的文献

1
Dimension reduction of microarray gene expression data: the accelerated failure time model.
J Bioinform Comput Biol. 2009 Dec;7(6):939-54. doi: 10.1142/s0219720009004412.

本文引用的文献

1
Predicting survival from microarray data--a comparative study.
Bioinformatics. 2007 Aug 15;23(16):2080-7. doi: 10.1093/bioinformatics/btm305. Epub 2007 Jun 6.
2
Cox survival analysis of microarray gene expression data using correlation principal component regression.
Stat Appl Genet Mol Biol. 2007;6:Article16. doi: 10.2202/1544-6115.1153. Epub 2007 May 29.
3
Partial least squares: a versatile tool for the analysis of high-dimensional genomic data.
Brief Bioinform. 2007 Jan;8(1):32-44. doi: 10.1093/bib/bbl016. Epub 2006 May 26.
4
Dimension reduction for classification with gene expression microarray data.
Stat Appl Genet Mol Biol. 2006;5:Article6. doi: 10.2202/1544-6115.1147. Epub 2006 Feb 24.
5
PLS dimension reduction for classification with microarray data.
Stat Appl Genet Mol Biol. 2004;3:Article33. doi: 10.2202/1544-6115.1075. Epub 2004 Nov 23.
6
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
Bioinformatics. 2005 Jul 1;21(13):3001-8. doi: 10.1093/bioinformatics/bti422. Epub 2005 Apr 6.
8
Partial least squares dimension reduction for microarray gene expression data with a censored response.
Math Biosci. 2005 Jan;193(1):119-37. doi: 10.1016/j.mbs.2004.10.007. Epub 2005 Jan 22.
9
Partial Cox regression analysis for high-dimensional microarray gene expression data.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i208-15. doi: 10.1093/bioinformatics/bth900.
10
Dimension reduction methods for microarrays with application to censored survival data.
Bioinformatics. 2004 Dec 12;20(18):3406-12. doi: 10.1093/bioinformatics/bth415. Epub 2004 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验