Boulesteix Anne-Laure, Strimmer Korbinian
Department of Medical Statistics and Epidemiology, Technical University of Munich, Ismaningerstrasse 22, D-81675 Munich, Germany.
Brief Bioinform. 2007 Jan;8(1):32-44. doi: 10.1093/bib/bbl016. Epub 2006 May 26.
Partial least squares (PLS) is an efficient statistical regression technique that is highly suited for the analysis of genomic and proteomic data. In this article, we review both the theory underlying PLS as well as a host of bioinformatics applications of PLS. In particular, we provide a systematic comparison of the PLS approaches currently employed, and discuss analysis problems as diverse as, e.g. tumor classification from transcriptome data, identification of relevant genes, survival analysis and modeling of gene networks and transcription factor activities.
偏最小二乘法(PLS)是一种高效的统计回归技术,非常适合用于分析基因组和蛋白质组数据。在本文中,我们回顾了PLS的基础理论以及PLS在生物信息学中的大量应用。特别是,我们对目前使用的PLS方法进行了系统比较,并讨论了各种分析问题,例如从转录组数据进行肿瘤分类、识别相关基因、生存分析以及基因网络和转录因子活性的建模。