内含肽介导的转基因小麦中的蛋白质组装:由分裂基因产生活性核糖核酸酶和乙酰乳酸合酶。
Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes.
作者信息
Kempe Katja, Rubtsova Myroslava, Gils Mario
机构信息
Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, Corrensstr. 3, 06466 Gatersleben, Germany.
出版信息
Plant Biotechnol J. 2009 Apr;7(3):283-97. doi: 10.1111/j.1467-7652.2008.00399.x. Epub 2009 Feb 12.
Engineering traits by the assembly of non-functional gene products is a promising tool for modern plant biotechnology. In this article, we describe the establishment of male sterility and herbicide resistance in wheat (Triticum aestivum) by complementing inactive precursor protein fragments through a split intein system. N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from the Synechocystis sp. gene DnaB and delivered into the wheat genome via biolistic particle bombardment. Both barnase fragments were expressed under the control of a tapetum-specific promoter. High efficiency of the split barnase system was achieved by introducing GGGGS linkers between the fusion domains of the assembled protein. Depending on the vector version that was transformed, up to 51% of primary transformed plants produced sterile pollen. In the F(1) progeny, the male-sterile phenotype segregated with both barnase gene fragments. Expression of the cytotoxic barnase in the tapetum did not apparently affect the vegetative phenotype and remained stable under increased temperatures. In addition, the reconstitution of sulphonylurea resistance was achieved by DnaE intein-mediated assembly of a mutated acetolactate synthase (ALS) protein from rice. The impacts of the technical advances revealed in this study on the concepts for trait control, transgene containment and hybrid breeding are discussed.
通过组装无功能基因产物来设计性状是现代植物生物技术的一种有前景的工具。在本文中,我们描述了通过分裂内含肽系统互补无活性前体蛋白片段,在小麦(Triticum aestivum)中建立雄性不育和除草剂抗性的方法。来自解淀粉芽孢杆菌的核糖核酸酶基因的N端和C端片段与来自集胞藻属基因DnaB的内含肽序列融合,并通过生物粒子轰击导入小麦基因组。两个核糖核酸酶片段均在绒毡层特异性启动子的控制下表达。通过在组装蛋白的融合结构域之间引入GGGGS接头,实现了分裂核糖核酸酶系统的高效性。根据转化的载体版本,高达51%的初级转化植株产生不育花粉。在F(1)后代中,雄性不育表型与两个核糖核酸酶基因片段分离。绒毡层中细胞毒性核糖核酸酶的表达显然不影响营养表型,并且在温度升高时保持稳定。此外,通过DnaE内含肽介导组装来自水稻的突变乙酰乳酸合酶(ALS)蛋白,实现了磺酰脲抗性的重建。本文讨论了本研究中揭示的技术进步对性状控制、转基因遏制和杂交育种概念的影响。