Suppr超能文献

糖原合酶激酶3β的亚细胞定位调控胚胎干细胞自我更新。

Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal.

作者信息

Bechard Matthew, Dalton Stephen

机构信息

Paul D. Coverdell Center for Biomedical and Health Sciences, Athens, Georgia 30602, USA.

出版信息

Mol Cell Biol. 2009 Apr;29(8):2092-104. doi: 10.1128/MCB.01405-08. Epub 2009 Feb 17.

Abstract

Phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT1), and c-myc have well-established roles in promoting the maintenance of murine embryonic stem cells (mESCs). In contrast, the activity of glycogen synthase kinase 3beta (GSK3beta), a negatively regulated target of AKT1 signaling, antagonizes self-renewal. Here, we show that PI3K/AKT1 signaling promotes self-renewal by suppressing GSK3beta activity and restricting its access to nuclear substrates such as c-myc. GSK3beta shuttles between the cytoplasm and nucleus in mESCs but accumulates in the cytoplasm in an inactive form due to AKT1-dependent nuclear export and inhibitory phosphorylation. When PI3K/AKT1 signaling declines following leukemia inhibitory factor withdrawal, active GSK3beta accumulates in the nucleus, where it targets c-myc through phosphorylation on threonine 58 (T58), promoting its degradation. Ectopic nuclear localization of active GSK3beta promotes differentiation, but this process is blocked by a mutant form of c-myc (T58A) that evades phosphorylation by GSK3beta. This novel mechanism explains how AKT1 promotes self-renewal by regulating the activity and localization of GSK3beta. This pathway converges on c-myc, a key regulator of mESC self-renewal.

摘要

磷脂酰肌醇3激酶(PI3K)、蛋白激酶B(AKT1)和c-myc在促进小鼠胚胎干细胞(mESC)的维持方面具有公认的作用。相比之下,糖原合酶激酶3β(GSK3β)作为AKT1信号的负调控靶点,其活性会拮抗自我更新。在此,我们表明PI3K/AKT1信号通过抑制GSK3β活性并限制其与核底物(如c-myc)的接触来促进自我更新。在mESC中,GSK3β在细胞质和细胞核之间穿梭,但由于依赖AKT1的核输出和抑制性磷酸化,它以无活性形式积聚在细胞质中。当白血病抑制因子撤除后PI3K/AKT1信号下降时,活性GSK3β积聚在细胞核中,在那里它通过苏氨酸58(T58)磷酸化靶向c-myc,促进其降解。活性GSK3β的异位核定位促进分化,但这一过程被逃避GSK3β磷酸化的c-myc突变体形式(T58A)所阻断。这种新机制解释了AKT1如何通过调节GSK3β的活性和定位来促进自我更新。该途径汇聚于c-myc,它是mESC自我更新的关键调节因子。

相似文献

1
Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal.
Mol Cell Biol. 2009 Apr;29(8):2092-104. doi: 10.1128/MCB.01405-08. Epub 2009 Feb 17.
3
LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism.
Development. 2005 Mar;132(5):885-96. doi: 10.1242/dev.01670. Epub 2005 Jan 26.
5
Reconciling the different roles of Gsk3β in "naïve" and "primed" pluripotent stem cells.
Cell Cycle. 2012 Aug 15;11(16):2991-6. doi: 10.4161/cc.21110. Epub 2012 Jul 24.
6
mTOR complex 1 controls the nuclear localization and function of glycogen synthase kinase 3β.
J Biol Chem. 2018 Sep 21;293(38):14723-14739. doi: 10.1074/jbc.RA118.002800. Epub 2018 Jul 30.
10
Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade.
J Immunol. 2012 Jan 1;188(1):163-9. doi: 10.4049/jimmunol.1101254. Epub 2011 Nov 30.

引用本文的文献

1
Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast.
EMBO J. 2024 Aug;43(15):3256-3286. doi: 10.1038/s44318-024-00149-7. Epub 2024 Jun 17.
3
BRD4 and MYC: power couple in transcription and disease.
FEBS J. 2023 Oct;290(20):4820-4842. doi: 10.1111/febs.16580. Epub 2022 Aug 3.
4
Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies.
Cells. 2022 May 31;11(11):1812. doi: 10.3390/cells11111812.
6
Opposing Roles of GSK3α and GSK3β Phosphorylation in Platelet Function and Thrombosis.
Int J Mol Sci. 2021 Sep 30;22(19):10656. doi: 10.3390/ijms221910656.
7
Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3.
Mol Biol Cell. 2021 Nov 1;32(21):ar21. doi: 10.1091/mbc.E21-05-0255. Epub 2021 Aug 18.
8
A GSK3-SRF Axis Mediates Angiotensin II Induced Endothelin Transcription in Vascular Endothelial Cells.
Front Cell Dev Biol. 2021 Jul 26;9:698254. doi: 10.3389/fcell.2021.698254. eCollection 2021.
10
GSK-3: a multifaceted player in acute leukemias.
Leukemia. 2021 Jul;35(7):1829-1842. doi: 10.1038/s41375-021-01243-z. Epub 2021 Apr 2.

本文引用的文献

2
The ground state of embryonic stem cell self-renewal.
Nature. 2008 May 22;453(7194):519-23. doi: 10.1038/nature06968.
3
An extended transcriptional network for pluripotency of embryonic stem cells.
Cell. 2008 Mar 21;132(6):1049-61. doi: 10.1016/j.cell.2008.02.039.
4
Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3.
Stem Cells. 2007 Nov;25(11):2705-11. doi: 10.1634/stemcells.2007-0086. Epub 2007 Jul 19.
5
New cell lines from mouse epiblast share defining features with human embryonic stem cells.
Nature. 2007 Jul 12;448(7150):196-9. doi: 10.1038/nature05972. Epub 2007 Jun 27.
6
Generation of germline-competent induced pluripotent stem cells.
Nature. 2007 Jul 19;448(7151):313-7. doi: 10.1038/nature05934. Epub 2007 Jun 6.
7
In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.
Nature. 2007 Jul 19;448(7151):318-24. doi: 10.1038/nature05944. Epub 2007 Jun 6.
9
Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis.
J Biol Chem. 2007 Jun 8;282(23):16989-7001. doi: 10.1074/jbc.M700610200. Epub 2007 Apr 16.
10
How is pluripotency determined and maintained?
Development. 2007 Feb;134(4):635-46. doi: 10.1242/dev.02787. Epub 2007 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验