Suppr超能文献

心血管系统中的血流动力学能量耗散:疾病状态的广义理论分析

Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states.

作者信息

Dasi Lakshmi P, Pekkan Kerem, de Zelicourt Diane, Sundareswaran Kartik S, Krishnankutty Resmi, Delnido Pedro J, Yoganathan Ajit P

机构信息

Wallace H. Coulter School of Biomedical Engineering, Georgia Institute of Technology and Emory University, Room 2119, U. A. Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332-0535, USA.

出版信息

Ann Biomed Eng. 2009 Apr;37(4):661-73. doi: 10.1007/s10439-009-9650-0. Epub 2009 Feb 18.

Abstract

BACKGROUND

We present a fundamental theoretical framework for analysis of energy dissipation in any component of the circulatory system and formulate the full energy budget for both venous and arterial circulations. New indices allowing disease-specific subject-to-subject comparisons and disease-to-disease hemodynamic evaluation (quantifying the hemodynamic severity of one vascular disease type to the other) are presented based on this formalism.

METHODS AND RESULTS

Dimensional analysis of energy dissipation rate with respect to the human circulation shows that the rate of energy dissipation is inversely proportional to the square of the patient body surface area and directly proportional to the cube of cardiac output. This result verified the established formulae for energy loss in aortic stenosis that was solely derived through empirical clinical experience. Three new indices are introduced to evaluate more complex disease states: (1) circulation energy dissipation index (CEDI), (2) aortic valve energy dissipation index (AV-EDI), and (3) total cavopulmonary connection energy dissipation index (TCPC-EDI). CEDI is based on the full energy budget of the circulation and is the proper measure of the work performed by the ventricle relative to the net energy spent in overcoming frictional forces. It is shown to be 4.01+/-0.16 for healthy individuals and above 7.0 for patients with severe aortic stenosis. Application of CEDI index on single-ventricle venous physiology reveals that the surgically created Fontan circulation, which is indeed palliative, progressively degrades in hemodynamic efficiency with growth (p<0.001), with the net dissipation in a typical Fontan patient (Body surface area=1.0 m(2)) being equivalent to that of an average case of severe aortic stenosis. AV-EDI is shown to be the proper index to gauge the hemodynamic severity of stenosed aortic valves as it accurately reflects energy loss. It is about 0.28+/-0.12 for healthy human valves. Moderate aortic stenosis has an AV-EDI one order of magnitude higher while clinically severe aortic stenosis cases always had magnitudes above 3.0. TCPC-EDI represents the efficiency of the TCPC connection and is shown to be negatively correlated to the size of a typical "bottle-neck" region (pulmonary artery) in the surgical TCPC pathway (p<0.05).

CONCLUSIONS

Energy dissipation in the human circulation has been analyzed theoretically to derive the proper scaling (indexing) factor. CEDI, AV-EDI, and TCPC-EDI are proper measures of the dissipative characteristics of the circulatory system, aortic valve, and the Fontan connection, respectively.

摘要

背景

我们提出了一个用于分析循环系统任何组成部分能量耗散的基本理论框架,并制定了静脉和动脉循环的完整能量预算。基于这种形式主义,提出了新的指标,允许进行疾病特异性的个体间比较以及疾病间的血流动力学评估(量化一种血管疾病类型相对于另一种的血流动力学严重程度)。

方法与结果

对人体循环的能量耗散率进行量纲分析表明,能量耗散率与患者体表面积的平方成反比,与心输出量的立方成正比。这一结果验证了仅通过经验临床经验得出的主动脉瓣狭窄能量损失的既定公式。引入了三个新指标来评估更复杂的疾病状态:(1)循环能量耗散指数(CEDI),(2)主动脉瓣能量耗散指数(AV - EDI),以及(3)全腔肺连接能量耗散指数(TCPC - EDI)。CEDI基于循环的完整能量预算,是衡量心室所做的功相对于克服摩擦力所消耗的净能量的合适指标。健康个体的CEDI为4.01±0.16,重度主动脉瓣狭窄患者的CEDI高于7.0。将CEDI指数应用于单心室静脉生理学研究表明,外科创建的Fontan循环虽然确实是姑息性的,但随着生长其血流动力学效率会逐渐下降(p<0.001),典型Fontan患者(体表面积 = 1.0 m²)的净耗散与重度主动脉瓣狭窄的平均病例相当。AV - EDI被证明是衡量狭窄主动脉瓣血流动力学严重程度的合适指标,因为它能准确反映能量损失。健康人瓣膜的AV - EDI约为0.28±0.12。中度主动脉瓣狭窄的AV - EDI高一个数量级,而临床重度主动脉瓣狭窄病例的AV - EDI总是高于3.0。TCPC - EDI代表TCPC连接的效率,并且被证明与外科TCPC路径中典型的“瓶颈”区域(肺动脉)大小呈负相关(p<0.05)。

结论

从理论上分析了人体循环中的能量耗散,以得出合适的缩放(索引)因子。CEDI、AV - EDI和TCPC - EDI分别是循环系统、主动脉瓣和Fontan连接的耗散特性的合适度量指标。

相似文献

1
Hemodynamic energy dissipation in the cardiovascular system: generalized theoretical analysis on disease states.
Ann Biomed Eng. 2009 Apr;37(4):661-73. doi: 10.1007/s10439-009-9650-0. Epub 2009 Feb 18.
3
Functional analysis of Fontan energy dissipation.
J Biomech. 2008 Jul 19;41(10):2246-52. doi: 10.1016/j.jbiomech.2008.04.011. Epub 2008 May 27.
4
Model-Based Comparison of the Normal and Fontan Circulatory Systems-Part II: Major Differences in Performance Characteristics.
World J Pediatr Congenit Heart Surg. 2015 Jul;6(3):360-73. doi: 10.1177/2150135115581386.
5
Hemodynamic effects of implanting a unidirectional valve in the inferior vena cava of the Fontan circulation pathway: an in vitro investigation.
Am J Physiol Heart Circ Physiol. 2013 Nov 15;305(10):H1538-47. doi: 10.1152/ajpheart.00351.2013. Epub 2013 Sep 6.
6
Dynamic hemodynamic energy loss in normal and stenosed aortic valves.
J Biomech Eng. 2010 Feb;132(2):021005. doi: 10.1115/1.4000874.
7
Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model.
ASAIO J. 2005 Sep-Oct;51(5):618-28. doi: 10.1097/01.mat.0000176169.73987.0d.
8
Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro.
Circulation. 2005 Nov 22;112(21):3264-71. doi: 10.1161/CIRCULATIONAHA.104.530931. Epub 2005 Nov 14.
9
Evaluation of hemodynamic performance of total cavopulmonary connection (TCPC) with porous inserts.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2937. doi: 10.1002/cnm.2937. Epub 2017 Nov 27.
10
The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise.
Am J Physiol Heart Circ Physiol. 2008 Dec;295(6):H2427-35. doi: 10.1152/ajpheart.00628.2008. Epub 2008 Oct 17.

引用本文的文献

1
A morphological indicator for aortic dissection: fitting circle of the thoracic aorta.
BMC Cardiovasc Disord. 2024 Aug 28;24(1):461. doi: 10.1186/s12872-024-04130-4.
2
Histopathology reveals concealed aortic valve inflammation.
J Cardiothorac Surg. 2024 Feb 2;19(1):41. doi: 10.1186/s13019-024-02587-0.
3
The Relation Between Viscous Energy Dissipation and Pulsation for Aortic Hemodynamics Driven by a Left Ventricular Assist Device.
Cardiovasc Eng Technol. 2023 Aug;14(4):560-576. doi: 10.1007/s13239-023-00670-6. Epub 2023 Jun 20.
4
The Hemodynamics of Patent Ductus Arteriosus in Patients after Central Shunt Operation.
Comput Math Methods Med. 2021 Apr 24;2021:6675613. doi: 10.1155/2021/6675613. eCollection 2021.
7
The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning.
J Biomech. 2019 Jan 3;82:87-95. doi: 10.1016/j.jbiomech.2018.10.013. Epub 2018 Oct 25.
8
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
J R Soc Interface. 2016 Jan;13(114):20151019. doi: 10.1098/rsif.2015.1019.
9
Role of Mitral Annulus Diastolic Geometry on Intraventricular Filling Dynamics.
J Biomech Eng. 2015 Dec;137(12):121007. doi: 10.1115/1.4031838.
10
Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics.
Ann Thorac Surg. 2015 Mar;99(3):911-7. doi: 10.1016/j.athoracsur.2014.10.043. Epub 2015 Jan 22.

本文引用的文献

1
The failing Fontan: options for surgical therapy.
Pediatr Cardiol. 2007 Nov-Dec;28(6):472-6. doi: 10.1007/s00246-007-9008-z.
2
Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics.
Circulation. 2007 Sep 11;116(11 Suppl):I165-71. doi: 10.1161/CIRCULATIONAHA.106.680827.
3
Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections.
Ann Biomed Eng. 2007 Nov;35(11):1840-56. doi: 10.1007/s10439-007-9356-0. Epub 2007 Jul 20.
4
Aortic stenosis: two steps forward, one step back.
Circulation. 2007 Jun 5;115(22):2799-800. doi: 10.1161/CIRCULATIONAHA.107.705848.
6
Introduction of a new optimized total cavopulmonary connection.
Ann Thorac Surg. 2007 Jun;83(6):2182-90. doi: 10.1016/j.athoracsur.2006.12.079.
7
Univentricular heart.
Circulation. 2007 Feb 13;115(6):800-12. doi: 10.1161/CIRCULATIONAHA.105.592378.
8
Impaired power output and cardiac index with hypoplastic left heart syndrome: a magnetic resonance imaging study.
Ann Thorac Surg. 2006 Oct;82(4):1267-75; discussion 1275-7. doi: 10.1016/j.athoracsur.2006.05.020.
9
Pulsatile blood flow, shear force, energy dissipation and Murray's Law.
Theor Biol Med Model. 2006 Aug 21;3:31. doi: 10.1186/1742-4682-3-31.
10
Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H668-76. doi: 10.1152/ajpheart.01301.2005. Epub 2006 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验