Kovacech Branislav, Zilka Norbert, Novak Michal
Institute of Neuroimmunology, AD Centre, Slovak Academy of Sciences, 84510 Bratislava, Slovak Republic.
Cell Mol Neurobiol. 2009 Sep;29(6-7):799-805. doi: 10.1007/s10571-009-9358-6. Epub 2009 Feb 19.
Alzheimer's disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, "Alzheimer's tau". The rat model showed that Alzheimer's tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer's filament core at a resolution of 1.6 A. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer's tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.
阿尔茨海默病(AD)是痴呆症的主要病因,痴呆症是一种逐渐破坏脑细胞并导致精神功能进行性衰退的病症。该疾病的特征是错误折叠的神经元蛋白——淀粉样蛋白和tau蛋白分别聚集成不溶性聚集体,即细胞外老年斑和细胞内神经原纤维缠结。然而,只有tau病理似乎与疾病进展相关,并且据信其在神经退行性变的进展中起核心作用。在AD中,tau蛋白会经历各种类型的翻译后修饰,最显著的是过度磷酸化和截短。我们使用四种蛋白质组学方法旨在揭示导致神经原纤维变性的关键步骤,从而确定AD的治疗靶点。通过表达截短的错误排序形式的tau蛋白“阿尔茨海默tau蛋白”,采用功能神经蛋白质组学构建了首个AD转基因大鼠模型。该大鼠模型表明,阿尔茨海默tau蛋白的毒性功能获得是诱导异常tau级联反应的原因,并且是神经原纤维变性发展的驱动力。结构神经蛋白质组学使我们能够以1.6埃的分辨率确定阿尔茨海默细丝核心的部分三维结构。信号神经蛋白质组学数据导致鉴定和表征了导致神经退行性变的相关磷酸化位点(tau磷酸信号组)。相互作用神经蛋白质组学揭示了在正常和病理条件下与阿尔茨海默tau蛋白相互作用的一组新蛋白质(tau相互作用组)之间的联系,这将为AD和其他tau蛋白病的治疗提供新的药物靶点和新的生物标志物。