Suppr超能文献

亚硫酸盐氧化酶中的分子内电子转移:阐明保守活性位点精氨酸的作用。

Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine.

作者信息

Emesh Safia, Rapson Trevor D, Rajapakshe Asha, Kappler Ulrike, Bernhardt Paul V, Tollin Gordon, Enemark John H

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

Biochemistry. 2009 Mar 17;48(10):2156-63. doi: 10.1021/bi801553q.

Abstract

All reported sulfite-oxidizing enzymes have a conserved arginine in their active site which hydrogen bonds to the equatorial oxygen ligand on the Mo atom. Previous studies on the pathogenic R160Q mutant of human sulfite oxidase (HSO) have shown that Mo-heme intramolecular electron transfer (IET) is dramatically slowed when positive charge is lost at this position. To improve our understanding of the function that this conserved positively charged residue plays in IET, we have studied the equivalent uncharged substitutions R55Q and R55M as well as the positively charged substitution R55K in bacterial sulfite dehydrogenase (SDH). The heme and molybdenum cofactor (Moco) subunits are tightly associated in SDH, which makes it an ideal system for improving our understanding of residue function in IET without the added complexity of the interdomain movement that occurs in HSO. Unexpectedly, the uncharged SDH variants (R55Q and R55M) exhibited increased IET rate constants relative to that of the wild type (3-4-fold) when studied by laser flash photolysis. The gain in function observed in SDH(R55Q) and SDH(R55M) suggests that the reduction in the level of IET seen in HSO(R160Q) is not due to a required role of this residue in the IET pathway itself, but to the fact that it plays an important role in heme orientation during the interdomain movement necessary for IET in HSO (as seen in viscosity experiments). The pH profiles of SDH(WT), SDH(R55M), and SDH(R55Q) show that the arginine substitution also alters the behavior of the Mo-heme IET equilibrium (K(eq)) and rate constants (k(et)) of both variants with respect to the SDH(WT) enzyme. SDH(WT) has a k(et) that is independent of pH and a K(eq) that increases as pH decreases; on the other hand, both SDH(R55M) and SDH(R55Q) have a k(et) that increases as pH decreases, and SDH(R55M) has a K(eq) that is pH-independent. IET in the SDH(R55Q) variant is inhibited by sulfate in laser flash photolysis experiments, a behavior that differs from that of SDH(WT), but which also occurs in HSO. IET in SDH(R55K) is slower than in SDH(WT). A new analysis of the possible mechanistic pathways for sulfite-oxidizing enzymes is presented and related to available kinetic and EPR results for these enzymes.

摘要

所有已报道的亚硫酸盐氧化酶在其活性位点都有一个保守的精氨酸,该精氨酸与钼原子上的赤道面氧配体形成氢键。先前对人亚硫酸盐氧化酶(HSO)的致病R160Q突变体的研究表明,当该位置失去正电荷时,钼-血红素分子内电子转移(IET)会显著减慢。为了更好地理解这个保守的带正电残基在IET中所起的作用,我们研究了细菌亚硫酸盐脱氢酶(SDH)中的等效不带电取代R55Q和R55M以及带正电取代R55K。在SDH中,血红素和钼辅因子(Moco)亚基紧密结合,这使其成为一个理想的系统,有助于我们理解IET中残基的功能,而不会像HSO那样因结构域间移动增加复杂性。出乎意料的是,通过激光闪光光解研究发现,与野生型相比,不带电的SDH变体(R55Q和R55M)的IET速率常数增加了(3 - 4倍)。在SDH(R55Q)和SDH(R55M)中观察到的功能增强表明,HSO(R160Q)中IET水平的降低并非由于该残基在IET途径本身中具有必需作用,而是因为它在HSO进行IET所需的结构域间移动过程中,在血红素定向方面起着重要作用(如在粘度实验中所见)。SDH(WT)、SDH(R55M)和SDH(R55Q)的pH曲线表明,精氨酸取代也改变了两种变体相对于SDH(WT)酶的钼-血红素IET平衡(K(eq))和速率常数(k(et))的行为。SDH(WT)的k(et)与pH无关,K(eq)随pH降低而增加;另一方面, SDH(R55M)和SDH(R55Q)的k(et)都随pH降低而增加,并且SDH(R55M)的K(eq)与pH无关。在激光闪光光解实验中,SDH(R55Q)变体中的IET受到硫酸盐的抑制,这种行为与SDH(WT)不同,但在HSO中也会出现。SDH(R55K)中的IET比SDH(WT)中的慢。本文提出了对亚硫酸盐氧化酶可能的作用机制途径的新分析,并将其与这些酶现有的动力学和电子顺磁共振结果相关联。

相似文献

3
Pulsed EPR investigations of the Mo(V) centers of the R55Q and R55M variants of sulfite dehydrogenase from Starkeya novella.
J Biol Inorg Chem. 2010 May;15(4):505-14. doi: 10.1007/s00775-009-0619-0. Epub 2010 Jan 19.
5
Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase.
J Biol Inorg Chem. 2013 Aug;18(6):645-53. doi: 10.1007/s00775-013-1010-8. Epub 2013 Jun 19.
6
Role of conserved tyrosine 343 in intramolecular electron transfer in human sulfite oxidase.
J Biol Chem. 2003 Jan 31;278(5):2913-20. doi: 10.1074/jbc.M210374200. Epub 2002 Nov 6.
8
Mechanistic complexities of sulfite oxidase: An enzyme with multiple domains, subunits, and cofactors.
J Inorg Biochem. 2023 Oct;247:112312. doi: 10.1016/j.jinorgbio.2023.112312. Epub 2023 Jul 4.
9
Intramolecular electron transfer in a bacterial sulfite dehydrogenase.
J Am Chem Soc. 2003 Dec 3;125(48):14696-7. doi: 10.1021/ja038197t.

引用本文的文献

1
Carbon Sink Potential of Sulfur-Oxidizing Bacteria in Groundwater at Petroleum-Contaminated Sites.
Microorganisms. 2025 Jul 18;13(7):1688. doi: 10.3390/microorganisms13071688.
4
The mononuclear molybdenum enzymes.
Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28.
5
Metabolic adaptation and trophic strategies of soil bacteria-C1- metabolism and sulfur chemolithotrophy in Starkeya novella.
Front Microbiol. 2013 Oct 17;4:304. doi: 10.3389/fmicb.2013.00304. eCollection 2013.
6
Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes().
Coord Chem Rev. 2013 Jan 1;257(1):110-118. doi: 10.1016/j.ccr.2012.05.038.
7
Functional dissection of the multi-domain di-heme cytochrome c(550) from Thermus thermophilus.
PLoS One. 2013;8(1):e55129. doi: 10.1371/journal.pone.0055129. Epub 2013 Jan 31.
8
Kinetic and thermodynamic effects of mutations of human sulfite oxidase.
Chem Biodivers. 2012 Sep;9(9):1621-34. doi: 10.1002/cbdv.201200010.
9
Intramolecular electron transfer in sulfite-oxidizing enzymes: probing the role of aromatic amino acids.
J Biol Inorg Chem. 2012 Mar;17(3):345-52. doi: 10.1007/s00775-011-0856-x. Epub 2011 Nov 5.

本文引用的文献

1
Molecular basis for enzymatic sulfite oxidation: how three conserved active site residues shape enzyme activity.
J Biol Chem. 2009 Jan 23;284(4):2053-63. doi: 10.1074/jbc.M807718200. Epub 2008 Nov 12.
2
Persistence of structure over fluctuations in biological electron-transfer reactions.
Phys Rev Lett. 2008 Oct 10;101(15):158102. doi: 10.1103/PhysRevLett.101.158102. Epub 2008 Oct 8.
3
Average electron tunneling route of the electron transfer in protein media.
J Phys Chem B. 2008 Aug 14;112(32):9948-58. doi: 10.1021/jp710689s. Epub 2008 Jul 16.
4
Tryptophan-accelerated electron flow through proteins.
Science. 2008 Jun 27;320(5884):1760-2. doi: 10.1126/science.1158241.
6
Sulfite increases lipoperoxidation and decreases the activity of catalase in brain of rats.
Metab Brain Dis. 2008 Mar;23(1):123-32. doi: 10.1007/s11011-007-9073-2. Epub 2007 Nov 22.
7
Magnetic resonance imaging and magnetic resonance spectroscopy in isolated sulfite oxidase deficiency.
J Child Neurol. 2007 Oct;22(10):1214-21. doi: 10.1177/0883073807306260.
8
Sulfite oxidizing enzymes.
Biochim Biophys Acta. 2007 May;1774(5):527-39. doi: 10.1016/j.bbapap.2007.03.006. Epub 2007 Mar 20.
9
Structure of the active site of sulfite dehydrogenase from Starkeya novella.
Inorg Chem. 2006 Sep 4;45(18):7488-92. doi: 10.1021/ic0607944.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验