Klein Eric L, Astashkin Andrei V, Raitsimring Arnold M, Enemark John H
Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041, USA.
Coord Chem Rev. 2013 Jan 1;257(1):110-118. doi: 10.1016/j.ccr.2012.05.038.
Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH(-), H(2)O, SO(3) (2-), or SO(4) (2-) group, because the primary O and S isotopes ((16)O and (32)S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.
亚硫酸盐氧化酶(SOEs),包括亚硫酸盐氧化酶(SO)和细菌亚硫酸盐脱氢酶(SDH),催化亚硫酸盐(SO₃²⁻)氧化为硫酸盐(SO₄²⁻)。SO和SDH的活性位点几乎相同,每个都有一个五配位的假方锥型钼,带有一个轴向氧代配体和三个赤道硫供体原子。一个硫来自保守的半胱氨酸残基,两个来自吡喃蝶呤二硫烯(钼蝶呤,MPT)辅因子。在催化循环过程中,暴露于溶剂中的剩余赤道配体的身份会发生变化。大量的体外研究,特别是那些涉及SOEs的Mo(V)态的电子顺磁共振(EPR)光谱的研究表明,这种可交换赤道配体的身份和取向取决于缓冲液的pH值、缓冲液中某些阴离子的存在和浓度,以及蛋白质中的特定点突变。然而,直到最近,EPR还不是一种直接探测特定结构的实用技术,在这些结构中,暴露于溶剂中的可交换配体是一个O、OH⁻、H₂O、SO₃²⁻或SO₄²⁻基团,因为主要的O和S同位素(¹⁶O和³²S)是磁沉默的(I = 0)。本综述重点介绍了在使用同位素标记、可变频率高分辨率脉冲EPR光谱、合成模型化合物和密度泛函理论(DFT)计算以阐明各种阴离子、点突变和空间因素在SOE活性位点结构的形成、稳定和转化中的作用方面的最新进展。