Suppr超能文献

人类信号网络上的蛋白质进化

Protein evolution on a human signaling network.

作者信息

Cui Qinghua, Purisima Enrico O, Wang Edwin

机构信息

Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.

出版信息

BMC Syst Biol. 2009 Feb 18;3:21. doi: 10.1186/1752-0509-3-21.

Abstract

BACKGROUND

The architectural structure of cellular networks provides a framework for innovations as well as constraints for protein evolution. This issue has previously been studied extensively by analyzing protein interaction networks. However, it is unclear how signaling networks influence and constrain protein evolution and conversely, how protein evolution modifies and shapes the functional consequences of signaling networks. In this study, we constructed a human signaling network containing more than 1,600 nodes and 5,000 links through manual curation of signaling pathways, and analyzed the dN/dS values of human-mouse orthologues on the network.

RESULTS

We revealed that the protein dN/dS value decreases along the signal information flow from the extracellular space to nucleus. In the network, neighbor proteins tend to have similar dN/dS ratios, indicating neighbor proteins have similar evolutionary rates: co-fast or co-slow. However, different types of relationships (activating, inhibitory and neutral) between proteins have different effects on protein evolutionary rates, i.e., physically interacting protein pairs have the closest evolutionary rates. Furthermore, for directed shortest paths, the more distant two proteins are, the less chance they share similar evolutionary rates. However, such behavior was not observed for neutral shortest paths. Fast evolving signaling proteins have two modes of evolution: immunological proteins evolve more independently, while apoptotic proteins tend to form network components with other signaling proteins and share more similar evolutionary rates, possibly enhancing rapid information exchange between apoptotic and other signaling pathways.

CONCLUSION

Major network constraints on protein evolution in protein interaction networks previously described have been found for signaling networks. We further uncovered how network characteristics affect the evolutionary and co-evolutionary behavior of proteins and how protein evolution can modify the existing functionalities of signaling networks. These new insights provide some general principles for understanding protein evolution in the context of signaling networks.

摘要

背景

细胞网络的架构为创新提供了框架,同时也对蛋白质进化构成了限制。此前,通过分析蛋白质相互作用网络,这个问题已得到广泛研究。然而,尚不清楚信号网络如何影响和限制蛋白质进化,反之,蛋白质进化如何改变和塑造信号网络的功能后果。在本研究中,我们通过手动整理信号通路构建了一个包含1600多个节点和5000条链接的人类信号网络,并分析了该网络上人类-小鼠直系同源物的dN/dS值。

结果

我们发现,蛋白质的dN/dS值沿着从细胞外空间到细胞核的信号信息流方向降低。在该网络中,相邻蛋白质往往具有相似的dN/dS比率,这表明相邻蛋白质具有相似的进化速率:共同快速进化或共同缓慢进化。然而,蛋白质之间不同类型的关系(激活、抑制和中性)对蛋白质进化速率有不同影响,即物理相互作用的蛋白质对进化速率最为接近。此外,对于有向最短路径,两种蛋白质距离越远,它们具有相似进化速率的可能性就越小。然而,在中性最短路径中未观察到这种现象。快速进化的信号蛋白有两种进化模式:免疫蛋白进化更为独立,而凋亡蛋白倾向于与其他信号蛋白形成网络组件并具有更相似的进化速率,这可能增强了凋亡信号通路与其他信号通路之间的快速信息交换。

结论

在信号网络中发现了先前描述的蛋白质相互作用网络中对蛋白质进化的主要网络限制。我们进一步揭示了网络特征如何影响蛋白质的进化和共同进化行为,以及蛋白质进化如何改变信号网络的现有功能。这些新见解为在信号网络背景下理解蛋白质进化提供了一些一般原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff56/2649034/4eae5307e678/1752-0509-3-21-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验