Zhao Lili, Woodworth George
Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA, U.S.A.
Stat Med. 2009 Apr 30;28(9):1339-52. doi: 10.1002/sim.3544.
Chen and Chaloner (Statist. Med. 2006; 25:2956-2966. DOI: 10.1002/sim.2429) present a Bayesian stopping rule for a single-arm clinical trial with a binary endpoint. In some cases, earlier stopping may be possible by basing the stopping rule on the time to a binary event. We investigate the feasibility of computing exact, Bayesian, decision-theoretic time-to-event stopping rules for a single-arm group sequential non-inferiority trial relative to an objective performance criterion. For a conjugate prior distribution, exponential failure time distribution, and linear and threshold loss structures, we obtain the optimal Bayes stopping rule by backward induction. We compute frequentist operating characteristics of including Type I error, statistical power, and expected run length. We also briefly address design issues.
陈和查洛纳(《统计医学》,2006年;25:2956 - 2966。DOI: 10.1002/sim.2429)提出了一种针对具有二元终点的单臂临床试验的贝叶斯停止规则。在某些情况下,通过基于二元事件发生的时间制定停止规则,可能能够更早地停止试验。我们研究了相对于客观性能标准,为单臂组序贯非劣效性试验计算精确的、贝叶斯的、决策理论的事件发生时间停止规则的可行性。对于共轭先验分布、指数失效时间分布以及线性和阈值损失结构,我们通过反向归纳法获得了最优贝叶斯停止规则。我们计算了包括I型错误、统计功效和预期运行长度在内的频率主义操作特征。我们还简要讨论了设计问题。