Suppr超能文献

珍珠鸡(Numida meleagris)行走和奔跑时肢体摆动的机械效率。

Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).

作者信息

Rubenson Jonas, Marsh Richard L

机构信息

School of Sport Science, Exercise & Health, The Univ. of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.

出版信息

J Appl Physiol (1985). 2009 May;106(5):1618-30. doi: 10.1152/japplphysiol.91115.2008. Epub 2009 Feb 19.

Abstract

Understanding the mechanical determinants of the energy cost of limb swing is crucial for refining our models of locomotor energetics, as well as improving treatments for those suffering from impaired limb-swing mechanics. In this study, we use guinea fowl (Numida meleagris) as a model to explore whether mechanical work at the joints explains limb-swing energy use by combining inverse dynamic modeling and muscle-specific energetics from blood flow measurements. We found that the overall efficiencies of the limb swing increased markedly from walking (3%) to fast running (17%) and are well below the usually accepted maximum efficiency of muscle, except at the fastest speeds recorded. The estimated efficiency of a single muscle used during ankle flexion (tibialis cranialis) parallels that of the total limb-swing efficiency (3% walking, 15% fast running). Taken together, these findings do not support the hypothesis that joint work is the major determinant of limb-swing energy use across the animal's speed range and warn against making simple predictions of energy use based on joint mechanical work. To understand limb-swing energy use, mechanical functions other than accelerating the limb segments need to be explored, including isometric force production and muscle work arising from active and passive antagonist muscle forces.

摘要

了解肢体摆动能量消耗的力学决定因素对于完善我们的运动能量学模型以及改善肢体摆动力学受损患者的治疗方法至关重要。在本研究中,我们以珍珠鸡(Numida meleagris)为模型,通过结合逆动力学建模和基于血流测量的肌肉特定能量学,探索关节处的机械功是否能解释肢体摆动的能量消耗。我们发现,肢体摆动的总体效率从行走时的3%显著提高到快速奔跑时的17%,并且除了记录到的最快速度外,均远低于通常公认的肌肉最大效率。在踝关节屈曲(胫骨前肌)过程中使用的单个肌肉的估计效率与整个肢体摆动效率相似(行走时为3%,快速奔跑时为15%)。综上所述,这些发现不支持关节功是动物速度范围内肢体摆动能量消耗的主要决定因素这一假设,并警告不要基于关节机械功对能量消耗进行简单预测。为了理解肢体摆动的能量消耗,需要探索除加速肢体节段之外的其他机械功能,包括等长力的产生以及主动和被动拮抗肌力量产生的肌肉功。

相似文献

1
Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).
J Appl Physiol (1985). 2009 May;106(5):1618-30. doi: 10.1152/japplphysiol.91115.2008. Epub 2009 Feb 19.
4
Blood flow in guinea fowl Numida meleagris as an indicator of energy expenditure by individual muscles during walking and running.
J Physiol. 2005 Apr 15;564(Pt 2):631-48. doi: 10.1113/jphysiol.2005.082974. Epub 2005 Feb 24.
6
Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.
PLoS One. 2014 Jun 30;9(6):e100399. doi: 10.1371/journal.pone.0100399. eCollection 2014.
8
The mechanical function of linked muscles in the guinea fowl hind limb.
J Exp Biol. 2010 Jul 1;213(Pt 13):2201-8. doi: 10.1242/jeb.038406.

引用本文的文献

2
Plasticity of the gastrocnemius elastic system in response to decreased work and power demand during growth.
J Exp Biol. 2021 Nov 1;224(21). doi: 10.1242/jeb.242694. Epub 2021 Nov 10.
3
Altering the Mechanical Load Environment During Growth Does Not Affect Adult Achilles Tendon Properties in an Avian Bipedal Model.
Front Bioeng Biotechnol. 2020 Sep 2;8:994. doi: 10.3389/fbioe.2020.00994. eCollection 2020.
5
Eliminating high-intensity activity during growth reduces mechanical power capacity but not submaximal metabolic cost in a bipedal animal model.
J Appl Physiol (1985). 2020 Jan 1;128(1):50-58. doi: 10.1152/japplphysiol.00679.2019. Epub 2019 Nov 21.
6
A dynamics and stability framework for avian jumping take-off.
R Soc Open Sci. 2018 Oct 31;5(10):181544. doi: 10.1098/rsos.181544. eCollection 2018 Oct.
8
The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.
PLoS One. 2018 Feb 21;13(2):e0192172. doi: 10.1371/journal.pone.0192172. eCollection 2018.
9
Gearing effects of the patella (knee extensor muscle sesamoid) of the helmeted guineafowl during terrestrial locomotion.
J Zool (1987). 2017 Nov;303(3):178-187. doi: 10.1111/jzo.12485. Epub 2017 Jul 19.
10
A quantitative evaluation of physical and digital approaches to centre of mass estimation.
J Anat. 2017 Nov;231(5):758-775. doi: 10.1111/joa.12667. Epub 2017 Aug 15.

本文引用的文献

1
Guineafowl hind limb function. I: Cineradiographic analysis and speed effects.
J Morphol. 1999 May;240(2):115-125. doi: 10.1002/(SICI)1097-4687(199905)240:2<115::AID-JMOR3>3.0.CO;2-Y.
2
The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking.
Gait Posture. 2008 May;27(4):628-34. doi: 10.1016/j.gaitpost.2007.08.005. Epub 2007 Oct 24.
3
Energetic cost of producing cyclic muscle force, rather than work, to swing the human leg.
J Exp Biol. 2007 Jul;210(Pt 13):2390-8. doi: 10.1242/jeb.02782.
4
Muscular coordination of knee motion during the terminal-swing phase of normal gait.
J Biomech. 2007;40(15):3314-24. doi: 10.1016/j.jbiomech.2007.05.006. Epub 2007 Jun 18.
5
The effects of adding mass to the legs on the energetics and biomechanics of walking.
Med Sci Sports Exerc. 2007 Mar;39(3):515-25. doi: 10.1249/mss.0b013e31802b3562.
6
Identification of passive elastic joint moment-angle relationships in the lower extremity.
J Biomech. 2007;40(12):2628-35. doi: 10.1016/j.jbiomech.2006.12.017. Epub 2007 Mar 13.
7
Averaged EMG profiles in jogging and running at different speeds.
Gait Posture. 2007 Apr;25(4):604-14. doi: 10.1016/j.gaitpost.2006.06.013. Epub 2006 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验