Ivanova Natalia, Starov Victor, Johnson Daniel, Hilal Nidal, Rubio Ramon
Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK.
Langmuir. 2009 Apr 9;25(6):3564-70. doi: 10.1021/la803679y.
Kinetics of spreading of aqueous trisiloxane surfactant T(n) (with n = 4, 6, and 8 ethoxy groups) solutions and conventional aqueous surfactant solutions (Tween 20, C12E4, SDS) over silicon wafers coated with PTFE AF is experimentally investigated. It has been found that trisiloxane solutions spread on highly hydrophobic PTFE AF coated silicone wafers; however, they do not show superspreading behavior on these highly hydrophobic substrates. Solutions of conventional nonionic surfactants investigated show kinetics of spreading similar to trisiloxanes. Three regimes of spreading have been identified (i) complete non-wetting during the spreading process at low concentrations, (ii) a transition from initial nonwetting to partial wetting at the end of the spreading process at intermediate concentrations, and (iii) partial wetting both at the beginning and the end of the spreading process at higher concentrations. Transition from the first regime (i) to the second regime (ii) takes place at the critical aggregation concentration (CAC) or critical micelle concentration (CMC), transition from regime (ii) to regime (iii) happens at the critical wetting concentration (CWC). In the case of regime (i) the spreading of nonionic surfactants solutions investigated on PTFE AF coated silicone wafers is slow and follows a theoretically predicted law (Starov; et al. J. Colloid Interface Sci. 2000, 227 (1), 185). In the case of regimes (ii) and (iii), the spreading of the nonionic surfactant solutions investigated proceeds in two stages: the fast short first stage, which is followed by a much slower second stage. It is shown that the slow stage develops according to a previously described theoretical model. According to this theory the surfactant molecules adsorb in front of the moving three-phase contact line (autophilic phenomenon), which results in a partial hydrophilisation of an initially hydrophobic substrate and a spreading as a consequence. We assume that the first stage of the spreading is related to the disintegration of surfactant aggregates in the vicinity of the moving three-phase contact line.
实验研究了含不同乙氧基数量(n = 4、6和8)的水性三硅氧烷表面活性剂T(n)溶液以及传统水性表面活性剂溶液(吐温20、C12E4、十二烷基硫酸钠)在涂覆有聚四氟乙烯AF的硅片上的铺展动力学。研究发现,三硅氧烷溶液能在高度疏水的涂覆聚四氟乙烯AF的硅片上铺展;然而,它们在这些高度疏水的基底上并未表现出超铺展行为。所研究的传统非离子表面活性剂溶液的铺展动力学与三硅氧烷类似。已确定了三种铺展状态:(i) 在低浓度下铺展过程中完全不润湿;(ii) 在中等浓度下铺展过程结束时从初始不润湿转变为部分润湿;(iii) 在较高浓度下铺展过程开始和结束时均为部分润湿。从第一种状态(i) 到第二种状态(ii) 的转变发生在临界聚集浓度(CAC)或临界胶束浓度(CMC)处,从状态(ii) 到状态(iii) 的转变发生在临界润湿浓度(CWC)处。在状态(i) 的情况下,所研究的非离子表面活性剂溶液在涂覆聚四氟乙烯AF的硅片上的铺展缓慢,且遵循理论预测规律(Starov等人,《胶体与界面科学杂志》,2000年,第227卷(1),第185页)。在状态(ii) 和(iii) 的情况下,所研究的非离子表面活性剂溶液的铺展分两个阶段进行:快速的短第一阶段,随后是慢得多的第二阶段。结果表明,慢阶段按照先前描述的理论模型发展。根据该理论,表面活性剂分子在移动的三相接触线前方吸附(自亲现象),这导致最初疏水的基底部分亲水化并进而铺展。我们假设铺展的第一阶段与移动的三相接触线附近表面活性剂聚集体的分解有关。