Suppr超能文献

细胞周期阶段进展分析确定了乳腺癌中具有主要预后和预测意义的独特表型。

Cell-cycle-phase progression analysis identifies unique phenotypes of major prognostic and predictive significance in breast cancer.

作者信息

Loddo M, Kingsbury S R, Rashid M, Proctor I, Holt C, Young J, El-Sheikh S, Falzon M, Eward K L, Prevost T, Sainsbury R, Stoeber K, Williams G H

机构信息

Department of Pathology and Cancer Institute, The Paul O'Gorman Building, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Br J Cancer. 2009 Mar 24;100(6):959-70. doi: 10.1038/sj.bjc.6604924. Epub 2009 Feb 24.

Abstract

Multiparameter analysis of core regulatory proteins involved in G1-S and G2-M cell-cycle transitions provides a powerful biomarker readout for assessment of the cell-cycle state. We have applied this algorithm to breast cancer to investigate how the cell cycle impacts on disease progression. Protein expression profiles of key constituents of the DNA replication licensing pathway (Mcm2, geminin) and mitotic machinery (Plk1, Aurora A and the Aurora substrate histone H3S10ph) were generated for a cohort of 182 patients and linked to clinicopathological parameters. Arrested differentiation and genomic instability were associated with an increased engagement of cells into the cell division cycle (P<0.0001). Three unique cell-cycle phenotypes were identified: (1) well-differentiated tumours composed predominantly of Mcm2-negative cells, indicative of an out-of-cycle state (18% of cases); (2) high Mcm2-expressing tumours but with low geminin, Aurora A, Plk1 and H3S10ph levels (S-G2-M progression markers), indicative of a G1-delayed/arrested state (24% cases); and (3) high Mcm2-expressing tumours and also expressing high levels of the S-G2-M progression markers, indicative of accelerated cell-cycle progression (58% of cases). The active cell-cycle progression phenotype had a higher risk of relapse when compared with out-of-cycle and G1-delayed/arrested phenotypes (HR=3.90 (1.81-8.40, P<0.001)), and was associated with Her-2 and triple negative subtypes (P<0.001). It is of note that high-grade tumours with the G1-delayed/arrested phenotype showed an identical low risk of relapse compared with well-differentiated out-of-cycle tumours (HR=1.00 (0.22-4.46), P=0.99). Our biomarker algorithm provides novel insights into the cell-cycle state of dynamic tumour cell populations in vivo. This information is of major prognostic significance and may impact on individualised therapeutic decisions. Patients with an accelerated phenotype are more likely to derive benefit from S- and M-phase-directed chemotherapeutic agents.

摘要

对参与G1-S期和G2-M期细胞周期转换的核心调节蛋白进行多参数分析,可为评估细胞周期状态提供强大的生物标志物读数。我们已将此算法应用于乳腺癌,以研究细胞周期如何影响疾病进展。为182例患者组成的队列生成了DNA复制许可途径(Mcm2、geminin)和有丝分裂机制(Plk1、Aurora A以及Aurora底物组蛋白H3S10ph)关键成分的蛋白质表达谱,并将其与临床病理参数相关联。分化停滞和基因组不稳定与细胞进入细胞分裂周期的增加有关(P<0.0001)。识别出三种独特的细胞周期表型:(1)主要由Mcm2阴性细胞组成的高分化肿瘤,表明处于细胞周期外状态(18%的病例);(2)Mcm2表达高但geminin、Aurora A、Plk1和H3S10ph水平低(S-G2-M期进展标志物)的肿瘤,表明处于G1期延迟/停滞状态(24%的病例);(3)Mcm2表达高且S-G2-M期进展标志物水平也高的肿瘤,表明细胞周期进展加速(58%的病例)。与细胞周期外和G1期延迟/停滞表型相比,活跃的细胞周期进展表型复发风险更高(HR=3.90(1.81-8.40,P<0.001)),且与Her-2和三阴性亚型相关(P<0.001)。值得注意的是,与高分化的细胞周期外肿瘤相比,具有G1期延迟/停滞表型的高级别肿瘤显示出相同的低复发风险(HR=1.00(0.22-4.46),P=0.99)。我们的生物标志物算法为体内动态肿瘤细胞群体的细胞周期状态提供了新的见解。这些信息具有重要的预后意义,可能会影响个体化治疗决策。具有加速表型的患者更有可能从S期和M期定向化疗药物中获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14af/2661794/2de92fa0088f/6604924f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验