Suppr超能文献

具有生物学相关性的裸离子络合物和溶剂化离子络合物的振动光谱。

Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance.

作者信息

Polfer Nick C, Oomens Jos

机构信息

Chemistry Department, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Mass Spectrom Rev. 2009 May-Jun;28(3):468-94. doi: 10.1002/mas.20215.

Abstract

The low density of ions in mass spectrometers generally precludes direct infrared (IR) absorption measurements. The IR spectrum of an ion can nonetheless be obtained by inducing photodissociation of the ion using a high-intensity tunable laser. The emergence of free electron lasers (FELs) and recent breakthroughs in bench-top lasers based on nonlinear optics have now made it possible to routinely record IR spectra of gas-phase ions. As the energy of one IR photon is insufficient to cause dissociation of molecules and strongly bound complexes, two main experimental strategies have been developed to effect photodissociation. In infrared multiple-photon dissociation (IR-MPD) many photons are absorbed resonantly and their energy is stored in the bath of vibrational modes, leading to dissociation. In the "messenger" technique a weakly bound van der Waals atom is detached upon absorption of a single photon. Fundamental, historical, and practical aspects of these methods will be presented. Both of these approaches make use of very different methods of ion preparation and manipulation. While in IR-MPD ions are irradiated in trapping mass spectrometers, the "messenger" technique is generally carried out in molecular beam instruments. The main focus of this review is the application of IR spectroscopy to biologically relevant molecular systems (amino acids, peptides, proteins). Particular issues that will be addressed here include gas-phase zwitterions, the (chemical) structures of peptides and their collision-induced dissociation (CID) products, IR spectra of gas-phase proteins, and the chelation of metal-ligand complexes. Another growing area of research is IR spectroscopy on solvated clusters, which offer a bridge between the gas-phase and solution environments. The development of state-of-the-art computational approaches has gone hand-in-hand with advances in experimental techniques. The main advantage of gas-phase cluster research, as opposed to condensed-phase experiments, is that the systems of interest can be understood in detail and structural effects can be studied in isolation. It will be shown that IR spectroscopy of mass-selected (bio)molecular systems is now well-placed to address specific questions on the individual effect of charge carriers (protons and metal ions), as well as solvent molecules on the overall structure.

摘要

质谱仪中离子的低密度通常排除了直接进行红外(IR)吸收测量的可能性。然而,通过使用高强度可调谐激光诱导离子的光解离,可以获得离子的红外光谱。自由电子激光器(FEL)的出现以及基于非线性光学的台式激光器最近取得的突破,现在使得常规记录气相离子的红外光谱成为可能。由于一个红外光子的能量不足以导致分子和强结合配合物的解离,因此已经开发了两种主要的实验策略来实现光解离。在红外多光子解离(IR-MPD)中,许多光子被共振吸收,它们的能量存储在振动模式的浴中,导致解离。在“信使”技术中,一个弱结合的范德华原子在吸收单个光子时被分离。将介绍这些方法的基本、历史和实际方面。这两种方法都使用了非常不同的离子制备和操作方法。在IR-MPD中,离子在阱式质谱仪中受到照射,而“信使”技术通常在分子束仪器中进行。本综述的主要重点是红外光谱在与生物相关的分子系统(氨基酸、肽、蛋白质)中的应用。这里将解决的具体问题包括气相两性离子、肽的(化学)结构及其碰撞诱导解离(CID)产物、气相蛋白质的红外光谱以及金属-配体配合物的螯合作用。另一个不断发展的研究领域是溶剂化簇的红外光谱,它为气相和溶液环境之间提供了一座桥梁。最先进的计算方法的发展与实验技术的进步齐头并进。与凝聚相实验相比,气相簇研究的主要优势在于可以详细理解感兴趣的系统,并且可以孤立地研究结构效应。结果表明,质量选择的(生物)分子系统的红外光谱现在非常适合解决关于电荷载体(质子和金属离子)以及溶剂分子对整体结构的个体影响的具体问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验