Heaton A L, Bowman V N, Oomens J, Steill J D, Armentrout P B
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
J Phys Chem A. 2009 May 14;113(19):5519-30. doi: 10.1021/jp9008064.
Gas-phase structures of cationized asparagine (Asn) including complexes with Li(+), Na(+), K(+), Rb(+), Cs(+), and Ba(2+), as well as protonated Asn, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by a free electron laser. Experimental spectra for the alkali metal cation complexes exhibit systematic trends, whereas spectra for Ba(2+)(Asn) and H(+)(Asn) are more distinct. To identify the structures formed experimentally, measured IRMPD spectra are compared to spectra calculated at a B3LYP/6-311+G(d,p) level with several effective core potentials and basis sets evaluated for the heavy metal systems. The dominant conformation ascertained for complexes with the smaller metal cations, Li(+)(Asn) and Na(+)(Asn), is a charge-solvated, tridentate [N,CO,CO] structure that binds the metal cation with the amine group of the amino acid backbone and to the carbonyl oxygen atoms of the backbone and amino acid side chain. For the larger alkali metal cation complexes, K(+)(Asn), Rb(+)(Asn), and Cs(+)(Asn), an additional charge-solvated, tridentate [COOH,CO] structure that binds the metal cation with the two oxygen atoms of the backbone carboxylic acid group and the carbonyl oxygen atom of the Asn side chain may also be present. The Ba(2+)(Asn) spectrum is characteristic of a single charge-solvated [N,CO,CO] conformation, in contrast to Gly, Trp, Arg, Gln, Pro, Ser, Val, and Glu, which all take on a zwitterionic structure when complexed to Ba(2+). In no case do the cationized Asn complexes show definitive evidence of forming a zwitterionic structure in the complexes studied here. For H(+)(Asn), a mixture of two [N,CO] structures, which differ only in the orientation the side chain and are calculated to be nearly identical in energy, explains the experimental spectrum well.
利用自由电子激光产生的光,通过红外多光子解离(IRMPD)作用光谱法研究了阳离子化天冬酰胺(Asn)的气相结构,包括与Li(+)、Na(+)、K(+)、Rb(+)、Cs(+)和Ba(2+)形成的配合物以及质子化的Asn。碱金属阳离子配合物的实验光谱呈现出系统的趋势,而Ba(2+)(Asn)和H(+)(Asn)的光谱则更为独特。为了确定实验中形成的结构,将测得的IRMPD光谱与在B3LYP/6-311+G(d,p)水平下计算的光谱进行比较,同时对重金属体系评估了几种有效核势和基组。确定的与较小金属阳离子Li(+)(Asn)和Na(+)(Asn)形成的配合物的主要构象是一种电荷溶剂化的三齿[N,CO,CO]结构,它将金属阳离子与氨基酸主链的胺基以及主链和氨基酸侧链的羰基氧原子结合。对于较大的碱金属阳离子配合物K(+)(Asn)、Rb(+)(Asn)和Cs(+)(Asn),可能还存在另一种电荷溶剂化的三齿[COOH,CO]结构,它将金属阳离子与主链羧酸基团的两个氧原子以及Asn侧链的羰基氧原子结合。Ba(2+)(Asn)光谱是单一电荷溶剂化[N,CO,CO]构象的特征,这与甘氨酸(Gly)、色氨酸(Trp)、精氨酸(Arg)、谷氨酰胺(Gln)、脯氨酸(Pro)、丝氨酸(Ser)、缬氨酸(Val)和谷氨酸(Glu)不同,它们与Ba(2+)络合时都呈现两性离子结构。在此研究的阳离子化Asn配合物在任何情况下都没有显示出形成两性离子结构的确切证据。对于H(+)(Asn),两种[N,CO]结构的混合物很好地解释了实验光谱,这两种结构仅在侧链方向上有所不同,并且计算得出它们的能量几乎相同。