de Vos Wiebe M, de Keizer Arie, Kleijn J Mieke, Cohen Stuart Martien A
Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
Langmuir. 2009 Apr 21;25(8):4490-7. doi: 10.1021/la803576k.
Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36-PEO370 and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 degrees C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to produce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length.
我们使用固定角度椭圆偏振仪,研究了在空气 - 水界面(朗缪尔 - 布洛杰特或LB转移)将聚苯乙烯表面垂直浸入聚苯乙烯 - 聚环氧乙烷(PS - PEO)嵌段共聚物层时的质量转移程度。转移的质量与空气 - 水界面处的PS - PEO接枝密度成正比,但转移的质量并不等于空气 - 水界面处的质量。我们发现,取决于PEO嵌段的链长,空气 - 水界面处只有一定比例的聚合物转移到固体表面。对于最短的PEO链长(PS36 - PEO148),质量转移量达到94%,而对于较长的链长(PS36 - PEO370和PS38 - PEO770),转移率分别为57%和19%。我们将这种质量转移减少归因于PEO嵌段和PS嵌段在PS表面的竞争。原子力显微镜显示,转移后材料均匀地铺展在表面上。然而,在对这些转移层进行短时间加热(95摄氏度,5分钟)后,PS - PEO层会发生去湿。这些结果对一些使用上述转移方法制备PEO聚合物刷的论文结果解释有重大影响,在少数情况下还结合了加热。我们简要回顾这些论文,并根据这些新信息讨论它们的主要结果。此外,我们表明,通过使用朗缪尔 - 谢弗(LS,水平)浸渍,可以实现比LB方法更高的质量转移。当仔细应用LB或LS方法时,它是一种非常强大的制备PEO刷的技术,因为它可以完全控制接枝密度和链长。