Suppr超能文献

Epac 选择性环磷酸腺苷类似物的乙酰氧基甲酯在大鼠 INS-1 细胞中增强 Rap1 激活及胰岛素促分泌特性:8-对氯苯硫基-2'-O-甲基环磷酸腺苷-乙酰氧基甲酯的研究

Enhanced Rap1 activation and insulin secretagogue properties of an acetoxymethyl ester of an Epac-selective cyclic AMP analog in rat INS-1 cells: studies with 8-pCPT-2'-O-Me-cAMP-AM.

作者信息

Chepurny Oleg G, Leech Colin A, Kelley Grant G, Dzhura Igor, Dzhura Elvira, Li Xiangquan, Rindler Michael J, Schwede Frank, Genieser Hans G, Holz George G

机构信息

Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA.

出版信息

J Biol Chem. 2009 Apr 17;284(16):10728-36. doi: 10.1074/jbc.M900166200. Epub 2009 Feb 25.

Abstract

To ascertain the identities of cyclic nucleotide-binding proteins that mediate the insulin secretagogue action of cAMP, the possible contributions of the exchange protein directly activated by cAMP (Epac) and protein kinase A (PKA) were evaluated in a pancreatic beta cell line (rat INS-1 cells). Assays of Rap1 activation, CREB phosphorylation, and PKA-dependent gene expression were performed in combination with live cell imaging and high throughput screening of a fluorescence resonance energy transfer-based cAMP sensor (Epac1-camps) to validate the selectivity with which acetoxymethyl esters (AM-esters) of cAMP analogs preferentially activate Epac or PKA. Selective activation of Epac or PKA was achieved following exposure of INS-1 cells to 8-pCPT-2'-O-Me-cAMP-AM or Bt(2)cAMP-AM, respectively. Both cAMP analogs exerted dose-dependent and glucose metabolism-dependent actions to stimulate insulin secretion, and when each was co-administered with the other, a supra-additive effect was observed. Because 2.4-fold more insulin was secreted in response to a saturating concentration (10 microm) of Bt(2)cAMP-AM as compared with 8-pCPT-2'-O-Me-cAMP-AM, and because the action of Bt(2)cAMP-AM but not 8-pCPT-2'-O-Me-cAMP-AM was nearly abrogated by treatment with 3 microm of the PKA inhibitor H-89, it is concluded that for INS-1 cells, it is PKA that acts as the dominant cAMP-binding protein in support of insulin secretion. Unexpectedly, 10-100 microm of the non-AM-ester of 8-pCPT-2'-O-Me-cAMP failed to stimulate insulin secretion and was a weak activator of Rap1 in INS-1 cells. Moreover, 10 microm of the AM-ester of 8-pCPT-2'-O-Me-cAMP stimulated insulin secretion from mouse islets, whereas the non-AM-ester did not. Thus, the membrane permeability of 8-pCPT-2'-O-Me-cAMP in insulin-secreting cells is so low as to limit its biological activity. It is concluded that prior reports documenting the failure of 8-pCPT-2'-O-Me-cAMP to act in beta cells, or other cell types, need to be re-evaluated through the use of the AM-ester of this cAMP analog.

摘要

为了确定介导cAMP胰岛素促分泌作用的环核苷酸结合蛋白的身份,我们在胰腺β细胞系(大鼠INS-1细胞)中评估了直接由cAMP激活的交换蛋白(Epac)和蛋白激酶A(PKA)的可能作用。结合活细胞成像和基于荧光共振能量转移的cAMP传感器(Epac1-camps)的高通量筛选,进行了Rap1激活、CREB磷酸化和PKA依赖性基因表达的测定,以验证cAMP类似物的乙酰氧基甲酯(AM酯)优先激活Epac或PKA的选择性。分别将INS-1细胞暴露于8-pCPT-2'-O-Me-cAMP-AM或Bt(2)cAMP-AM后,实现了对Epac或PKA的选择性激活。两种cAMP类似物均发挥剂量依赖性和葡萄糖代谢依赖性作用来刺激胰岛素分泌,当将它们共同给予彼此时,观察到超加性效应。由于与8-pCPT-2'-O-Me-cAMP-AM相比,饱和浓度(10 μM)的Bt(2)cAMP-AM刺激分泌的胰岛素多2.4倍,并且由于用3 μM的PKA抑制剂H-89处理几乎消除了Bt(2)cAMP-AM而非8-pCPT-2'-O-Me-cAMP-AM的作用,因此得出结论,对于INS-1细胞,PKA是支持胰岛素分泌的主要cAMP结合蛋白。出乎意料的是,10 - 100 μM的8-pCPT-2'-O-Me-cAMP非AM酯未能刺激INS-1细胞中的胰岛素分泌,并且是Rap1的弱激活剂。此外,10 μM的8-pCPT-2'-O-Me-cAMP AM酯刺激小鼠胰岛分泌胰岛素,而非AM酯则不能。因此,8-pCPT-2'-O-Me-cAMP在胰岛素分泌细胞中的膜通透性非常低,以至于限制了其生物活性。得出的结论是,先前记录8-pCPT-2'-O-Me-cAMP在β细胞或其他细胞类型中不起作用的报道需要通过使用这种cAMP类似物的AM酯来重新评估。

相似文献

2
PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM in human islets of Langerhans.
Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E622-33. doi: 10.1152/ajpendo.00630.2009. Epub 2009 Dec 15.
6
cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells.
J Physiol. 2006 Jun 15;573(Pt 3):595-609. doi: 10.1113/jphysiol.2006.107391. Epub 2006 Apr 13.
8
Rap1 activation plays a regulatory role in pancreatic amylase secretion.
J Biol Chem. 2008 Aug 29;283(35):23884-94. doi: 10.1074/jbc.M800754200. Epub 2008 Jun 24.
9
Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells.
J Physiol. 2008 Mar 1;586(5):1307-19. doi: 10.1113/jphysiol.2007.143818. Epub 2008 Jan 17.
10
Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.
Biochem Biophys Res Commun. 2013 Aug 9;437(4):603-8. doi: 10.1016/j.bbrc.2013.07.007. Epub 2013 Jul 12.

引用本文的文献

2
Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates.
Sci Adv. 2022 Apr 22;8(16):eabm2960. doi: 10.1126/sciadv.abm2960. Epub 2022 Apr 20.
4
Monoamine Oxidase-B Inhibitor Reduction in Pro-Inflammatory Cytokines Mediated by Inhibition of cAMP-PKA/EPAC Signaling.
Front Pharmacol. 2021 Nov 17;12:741460. doi: 10.3389/fphar.2021.741460. eCollection 2021.
8
GLP-1 signaling suppresses menin's transcriptional block by phosphorylation in β cells.
J Cell Biol. 2019 Mar 4;218(3):855-870. doi: 10.1083/jcb.201805049. Epub 2019 Feb 21.
10
Silibinin ameliorates amylin-induced pancreatic β-cell apoptosis partly via upregulation of GLP-1R/PKA pathway.
Mol Cell Biochem. 2019 Feb;452(1-2):83-94. doi: 10.1007/s11010-018-3414-9. Epub 2018 Jul 18.

本文引用的文献

1
Signaling pathways utilized by PTH and dopamine to inhibit phosphate transport in mouse renal proximal tubule cells.
Am J Physiol Renal Physiol. 2009 Feb;296(2):F355-61. doi: 10.1152/ajprenal.90426.2008. Epub 2008 Nov 5.
2
Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha- and intestinal L-cell lines.
Am J Physiol Endocrinol Metab. 2009 Jan;296(1):E174-81. doi: 10.1152/ajpendo.90419.2008. Epub 2008 Oct 14.
3
Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells.
J Physiol. 2008 Nov 15;586(22):5367-81. doi: 10.1113/jphysiol.2008.158477. Epub 2008 Sep 18.
4
PGE(2) induces COX-2 expression in podocytes via the EP(4) receptor through a PKA-independent mechanism.
Cell Signal. 2008 Nov;20(11):2156-64. doi: 10.1016/j.cellsig.2008.08.007. Epub 2008 Aug 15.
5
8-pCPT-2'-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue.
Chembiochem. 2008 Sep 1;9(13):2052-4. doi: 10.1002/cbic.200800216.
6
Cyclic nucleotide analogs as probes of signaling pathways.
Nat Methods. 2008 Apr;5(4):277-8. doi: 10.1038/nmeth0408-277.
7
Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells.
J Physiol. 2008 Mar 1;586(5):1307-19. doi: 10.1113/jphysiol.2007.143818. Epub 2008 Jan 17.
8
Epac: effectors and biological functions.
Naunyn Schmiedebergs Arch Pharmacol. 2008 Jun;377(4-6):345-57. doi: 10.1007/s00210-007-0246-7. Epub 2008 Jan 5.
9
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP.
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19333-8. doi: 10.1073/pnas.0707054104. Epub 2007 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验