Suppr超能文献

嗅球项链状肾小球的异质性感觉神经支配和广泛的球内连接。

Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.

作者信息

Cockerham Renee E, Puche Adam C, Munger Steven D

机构信息

Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2009;4(2):e4657. doi: 10.1371/journal.pone.0004657. Epub 2009 Feb 27.

Abstract

The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB) targets of an olfactory sensory neuron (OSN) subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO(2). In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR), we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.

摘要

哺乳动物的鼻子利用多个嗅觉子系统来识别和转导各种化学感觉刺激。这些子系统在鼻腔内的解剖位置、嗅觉前脑的靶标以及它们采用的转导机制方面存在差异。在此,我们报告它们在刺激编码策略上也可能存在差异。项链状肾小球是嗅觉感觉神经元(OSN)亚群的唯一主要嗅球(MOB)靶标,该亚群的特征在于其受体鸟苷酸环化酶GC-D和磷酸二酯酶PDE2的表达,以及对利钠肽尿鸟苷素和鸟苷素以及气体CO₂的化学敏感性。与表达相同气味受体(OR)的OSN对典型MOB肾小球的均匀感觉神经支配形成鲜明对比的是,我们发现小鼠的每个项链状肾小球都接受来自至少两个不同感觉神经元群体的异质神经支配:一个表达GC-D和PDE2,另一个表达嗅觉标记蛋白。在主要嗅觉系统中,人们认为气味特征是通过组合策略编码的,并在MOB中由肾小球激活模式来表示。这种组合编码方案要求表达相同OR并表现出均匀刺激选择性的OSN对单个肾小球进行功能上均匀的感觉输入;因此,每个肾小球中的活动反映了单一OSN类型的刺激。多个功能不同的OSN亚型对单个项链状肾小球的异质感觉神经支配排除了该嗅觉子系统中类似的组合编码策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/543d/2645502/ac42d525a42a/pone.0004657.g001.jpg

相似文献

1
Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.
PLoS One. 2009;4(2):e4657. doi: 10.1371/journal.pone.0004657. Epub 2009 Feb 27.
2
Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems.
PLoS One. 2016 Nov 30;11(11):e0165343. doi: 10.1371/journal.pone.0165343. eCollection 2016.
3
Afferent activity to necklace glomeruli is dependent on external stimuli.
BMC Res Notes. 2009 Mar 2;2:31. doi: 10.1186/1756-0500-2-31.
4
Olfactory marker protein (OMP) regulates formation and refinement of the olfactory glomerular map.
Nat Commun. 2018 Nov 29;9(1):5073. doi: 10.1038/s41467-018-07544-9.
6
Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F.
Development. 2007 Nov;134(22):4063-72. doi: 10.1242/dev.008722. Epub 2007 Oct 17.
7
P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb.
Front Cell Neurosci. 2018 Sep 4;12:295. doi: 10.3389/fncel.2018.00295. eCollection 2018.
9
G-protein coupled receptors Mc4r and Drd1a can serve as surrogate odorant receptors in mouse olfactory sensory neurons.
Mol Cell Neurosci. 2018 Apr;88:138-147. doi: 10.1016/j.mcn.2018.01.010. Epub 2018 Jan 31.
10
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
J Neurosci. 2021 Feb 10;41(6):1218-1241. doi: 10.1523/JNEUROSCI.2167-20.2020. Epub 2021 Jan 5.

引用本文的文献

1
Cannabidiol enhances socially transmitted food preference: a role of acetylcholine in the mouse basal forebrain.
Psychopharmacology (Berl). 2025 Feb;242(2):247-269. doi: 10.1007/s00213-024-06670-1. Epub 2024 Aug 19.
2
selectively marks inhibitory dynorphin neurons in the spinal dorsal horn but is dispensable for pain and itch sensitivity.
Pain Rep. 2021 Jul 19;6(2):e947. doi: 10.1097/PR9.0000000000000947. eCollection 2021 Jul-Aug.
3
Olfactory subsystems associated with the necklace glomeruli in rodents.
Cell Tissue Res. 2021 Jan;383(1):549-557. doi: 10.1007/s00441-020-03388-2. Epub 2021 Jan 6.
4
P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb.
Front Cell Neurosci. 2018 Sep 4;12:295. doi: 10.3389/fncel.2018.00295. eCollection 2018.
5
Olfaction and Pheromones: Uncanonical Sensory Influences and Bulbar Interactions.
Front Neuroanat. 2017 Nov 15;11:108. doi: 10.3389/fnana.2017.00108. eCollection 2017.
6
Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems.
PLoS One. 2016 Nov 30;11(11):e0165343. doi: 10.1371/journal.pone.0165343. eCollection 2016.
7
A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction.
Cell. 2016 Jun 16;165(7):1734-1748. doi: 10.1016/j.cell.2016.05.001. Epub 2016 May 26.
9
Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus.
Curr Biol. 2015 May 18;25(10):1340-6. doi: 10.1016/j.cub.2015.03.026. Epub 2015 Apr 30.
10
Mammalian pheromones.
Annu Rev Physiol. 2014;76:151-75. doi: 10.1146/annurev-physiol-021113-170334. Epub 2013 Aug 26.

本文引用的文献

1
Grueneberg ganglion neurons respond to cool ambient temperatures.
Eur J Neurosci. 2008 Nov;28(9):1775-85. doi: 10.1111/j.1460-9568.2008.06465.x.
2
Expression of cGMP signaling elements in the Grueneberg ganglion.
Histochem Cell Biol. 2009 Jan;131(1):75-88. doi: 10.1007/s00418-008-0514-8. Epub 2008 Oct 1.
3
Subsystem organization of the mammalian sense of smell.
Annu Rev Physiol. 2009;71:115-40. doi: 10.1146/annurev.physiol.70.113006.100608.
4
Grueneberg ganglion cells mediate alarm pheromone detection in mice.
Science. 2008 Aug 22;321(5892):1092-5. doi: 10.1126/science.1160770.
5
ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer.
Biochem Biophys Res Commun. 2008 Mar 7;367(2):440-5. doi: 10.1016/j.bbrc.2007.12.153. Epub 2008 Jan 4.
6
Encoding olfactory signals via multiple chemosensory systems.
Crit Rev Biochem Mol Biol. 2007 Nov-Dec;42(6):463-80. doi: 10.1080/10409230701693359.
7
Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F.
Development. 2007 Nov;134(22):4063-72. doi: 10.1242/dev.008722. Epub 2007 Oct 17.
8
Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium.
Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14507-12. doi: 10.1073/pnas.0704965104. Epub 2007 Aug 27.
9
Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse.
Science. 2007 Aug 17;317(5840):953-7. doi: 10.1126/science.1144233.
10
Chemotopic odorant coding in a mammalian olfactory system.
J Comp Neurol. 2007 Jul 1;503(1):1-34. doi: 10.1002/cne.21396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验