神经元特异性 FMRP 在生命早期关键期嗅脑传入神经重塑中的作用。
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period.
机构信息
Vanderbilt Brain Institute.
Department of Biological Sciences.
出版信息
J Neurosci. 2021 Feb 10;41(6):1218-1241. doi: 10.1523/JNEUROSCI.2167-20.2020. Epub 2021 Jan 5.
Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling. Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.
关键期是神经回路有效适应新感觉环境的发育窗口。脆性 X 综合征(FXS)的动物模型是一种常见的单基因自闭症谱系障碍(ASD),表现出感觉体验驱动的关键期的深刻障碍。然而,尚不清楚致病的脆性 X 智力迟钝蛋白(FMRP)是否在神经元中均匀作用,或者是否表现出神经元特异性功能。在这里,我们使用两性的遗传上可操作的脑触角叶(AL)嗅觉回路来研究神经元特异性 FMRP 在生命早期关键期期间嗅觉感觉神经元(OSN)支配的气味经验依赖性重塑中的作用。我们发现靶向 OSN 类特异性 FMRP RNAi 会损害 AL 突触小球内的支配重塑,而全局缺失突变体则显示出相对正常的气味驱动的细化。我们发现 OSN 细胞自主和非自主的 FMRP 功能都介导了气味经验依赖性重塑,AL 回路 FMRP 失衡导致整体小球支配的细化缺陷。我们发现 OSN 类特异性 FMRP 水平双向调节关键期重塑,气味经验选择性地控制 AL 小球中的 OSN 突触末梢。我们发现 OSN 类特异性 FMRP 缺失通过破坏来自介导整体 AL 增益控制的其他气味反应性 OSN 的侧向调制的反应来损害关键期重塑。我们发现沉默 AL 中间神经元中的谷氨酸能会减少 OSN 重塑,而相反,干扰 OSN 类特异性 GABA 信号会增强重塑。这些发现揭示了 FMRP 对 OSN 突触重塑的控制具有神经元特异性的电路功能,并表明神经网络如何补偿全局 FMRP 缺失以恢复正常的关键期大脑电路重塑。脆性 X 综合征(FXS)是智力障碍和自闭症谱系障碍(ASD)的主要单基因病因,表现出严重的神经发育迟缓。同样,FXS 疾病模型显示神经发育关键期受损。在经过良好映射的嗅觉回路模型中,在单个嗅觉感觉神经元(OSN)类中扰乱致病的脆性 X 智力迟钝蛋白(FMRP)会损害生命早期关键期期间的气味依赖性重塑。重要的是,这种损伤需要激活其他 OSN,并且当从所有 OSN 中去除 FMRP 时,嗅觉回路可以补偿。了解发育中神经回路中神经元特异性 FMRP 的要求以及 FMRP 缺失的补偿机制,应该有助于我们设计 FXS 治疗方法。这项工作表明,FXS 治疗方法可以利用同型平衡机制来减轻电路水平的缺陷。
相似文献
引用本文的文献
Front Cell Dev Biol. 2025-2-18