Lobsiger Christian S, Boillee Severine, McAlonis-Downes Melissa, Khan Amir M, Feltri M Laura, Yamanaka Koji, Cleveland Don W
Department of Medicine and Neuroscience, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4465-70. doi: 10.1073/pnas.0813339106. Epub 2009 Feb 27.
Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.
遗传性肌萎缩侧索硬化症(ALS)中的神经退行性变是非细胞自主性的,导致ALS的突变型超氧化物歧化酶1(SOD1)在多种细胞类型中发生损伤。在运动神经元中对普遍表达的突变型SOD1基因进行选择性失活已表明,运动神经元内的突变损伤是疾病起始的决定因素,而相邻星形胶质细胞或小胶质细胞内的突变合成则加速疾病进展。我们现在报告一个惊人的发现:在雪旺细胞中,一种完全具有歧化酶活性的与ALS相关的突变体(SOD1(G³⁷R))的合成减少(70%)会显著加速疾病进展,并伴有神经中胰岛素样生长因子1(IGF-1)的减少。与由无歧化酶活性的SOD1突变体与有歧化酶活性的SOD1突变体导致的小鼠模型疾病持续时间较短的情况相结合,我们的研究结果表明,在疾病进展过程中存在一个氧化级联反应,该反应在包裹轴突的雪旺细胞内触发,并且可以通过提高歧化酶活性来改善。因此,在家族性ALS中,对具有歧化酶活性的突变型SOD1进行治疗性下调时,不应以雪旺细胞为靶点。