Suppr超能文献

蛋白质动力学的统一模型。

A unified model of protein dynamics.

作者信息

Frauenfelder Hans, Chen Guo, Berendzen Joel, Fenimore Paul W, Jansson Helén, McMahon Benjamin H, Stroe Izabela R, Swenson Jan, Young Robert D

机构信息

Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5129-34. doi: 10.1073/pnas.0900336106. Epub 2009 Feb 27.

Abstract

Protein functions require conformational motions. We show here that the dominant conformational motions are slaved by the hydration shell and the bulk solvent. The protein contributes the structure necessary for function. We formulate a model that is based on experiments, insights from the physics of glass-forming liquids, and the concepts of a hierarchically organized energy landscape. To explore the effect of external fluctuations on protein dynamics, we measure the fluctuations in the bulk solvent and the hydration shell with broadband dielectric spectroscopy and compare them with internal fluctuations measured with the Mössbauer effect and neutron scattering. The result is clear. Large-scale protein motions are slaved to the fluctuations in the bulk solvent. They are controlled by the solvent viscosity, and are absent in a solid environment. Internal protein motions are slaved to the beta fluctuations of the hydration shell, are controlled by hydration, and are absent in a dehydrated protein. The model quantitatively predicts the rapid increase of the mean-square displacement above approximately 200 K, shows that the external beta fluctuations determine the temperature- and time-dependence of the passage of carbon monoxide through myoglobin, and explains the nonexponential time dependence of the protein relaxation after photodissociation.

摘要

蛋白质功能需要构象运动。我们在此表明,主要的构象运动受水化层和主体溶剂的支配。蛋白质提供功能所需的结构。我们构建了一个基于实验、玻璃形成液体物理学的见解以及层次组织的能量景观概念的模型。为了探究外部涨落对蛋白质动力学的影响,我们用宽带介电谱测量主体溶剂和水化层中的涨落,并将其与用穆斯堡尔效应和中子散射测量的内部涨落进行比较。结果很明显。大规模的蛋白质运动受主体溶剂涨落的支配。它们受溶剂粘度控制,在固体环境中不存在。蛋白质内部运动受水化层的β涨落支配,受水化作用控制,在脱水蛋白质中不存在。该模型定量预测了均方位移在约200 K以上的快速增加,表明外部β涨落决定了一氧化碳通过肌红蛋白的温度和时间依赖性,并解释了光解离后蛋白质弛豫的非指数时间依赖性。

相似文献

1
A unified model of protein dynamics.
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5129-34. doi: 10.1073/pnas.0900336106. Epub 2009 Feb 27.
2
Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions.
Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14408-13. doi: 10.1073/pnas.0405573101. Epub 2004 Sep 24.
3
Conformational relaxation and ligand binding in myoglobin.
Biochemistry. 1994 May 3;33(17):5128-45. doi: 10.1021/bi00183a017.
4
The protein-solvent glass transition.
Biochim Biophys Acta. 2010 Jan;1804(1):3-14. doi: 10.1016/j.bbapap.2009.06.019. Epub 2009 Jul 3.
5
Slaving: solvent fluctuations dominate protein dynamics and functions.
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16047-51. doi: 10.1073/pnas.212637899. Epub 2002 Nov 20.
6
Hydration, slaving and protein function.
Biophys Chem. 2002 Jul 10;98(1-2):35-48. doi: 10.1016/s0301-4622(02)00083-2.
7
Coupling of protein and environment fluctuations.
Biochim Biophys Acta. 2011 Aug;1814(8):916-21. doi: 10.1016/j.bbapap.2011.05.005. Epub 2011 May 14.
8
Role of solvent for the dynamics and the glass transition of proteins.
J Phys Chem B. 2011 Apr 14;115(14):4099-109. doi: 10.1021/jp1089867. Epub 2011 Mar 22.
9
Ligand binding to heme proteins: connection between dynamics and function.
Biochemistry. 1991 Apr 23;30(16):3988-4001. doi: 10.1021/bi00230a026.
10
Protein conformational entropy is not slaved to water.
Sci Rep. 2020 Oct 16;10(1):17587. doi: 10.1038/s41598-020-74382-5.

引用本文的文献

1
The Effect of Electron Spin-Dependent Polarizability on Protein Activity.
Biomolecules. 2025 Jun 6;15(6):830. doi: 10.3390/biom15060830.
3
Fast product release requires active-site water dynamics in carbonic anhydrase.
Nat Commun. 2025 May 12;16(1):4404. doi: 10.1038/s41467-025-59645-x.
5
Interactions of Sucrose and Trehalose with Lysozyme in Different Media: A Perspective from Atomistic Molecular Dynamics Simulations.
Mol Pharm. 2025 Jun 2;22(6):2997-3009. doi: 10.1021/acs.molpharmaceut.4c01435. Epub 2025 Apr 25.
6
Improvement in protein HSQC spectra from addition of betaine.
J Biomol NMR. 2025 Sep;79(3):155-162. doi: 10.1007/s10858-025-00463-0. Epub 2025 Mar 10.
8
Hidden water's influence on rhodopsin activation.
Biophys J. 2024 Dec 17;123(24):4167-4179. doi: 10.1016/j.bpj.2024.11.012. Epub 2024 Nov 16.
9
Hydrogen/Deuterium Exchange Mass Spectrometry: Fundamentals, Limitations, and Opportunities.
Mol Cell Proteomics. 2024 Nov;23(11):100853. doi: 10.1016/j.mcpro.2024.100853. Epub 2024 Oct 9.

本文引用的文献

1
A physical picture of protein dynamics and conformational changes.
J Biol Phys. 2007 Dec;33(5-6):371-87. doi: 10.1007/s10867-008-9102-3. Epub 2008 Aug 27.
2
Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation.
Nature. 2008 Dec 18;456(7224):904-9. doi: 10.1038/nature07605.
3
Which properties of a spanning network of hydration water enable biological functions?
Chemphyschem. 2008 Dec 22;9(18):2695-702. doi: 10.1002/cphc.200800662.
5
Dynamic personalities of proteins.
Nature. 2007 Dec 13;450(7172):964-72. doi: 10.1038/nature06522.
6
Mapping hydration dynamics around a protein surface.
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18461-6. doi: 10.1073/pnas.0707647104. Epub 2007 Nov 14.
7
Transient pockets on protein surfaces involved in protein-protein interaction.
J Med Chem. 2007 Jul 26;50(15):3457-64. doi: 10.1021/jm070095g. Epub 2007 Jun 30.
8
The Johari-Goldstein beta-relaxation of water.
J Phys Chem B. 2007 Jul 19;111(28):8197-209. doi: 10.1021/jp071857m. Epub 2007 Jun 22.
9
Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules.
Chemphyschem. 2007 Jan 8;8(1):23-33. doi: 10.1002/cphc.200600298.
10
Protein folding is slaved to solvent motions.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15469-72. doi: 10.1073/pnas.0607168103. Epub 2006 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验