Suppr超能文献

弗罗利希凝聚的弱、强及相干态及其在太赫兹医学和量子意识中的应用。

Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness.

作者信息

Reimers Jeffrey R, McKemmish Laura K, McKenzie Ross H, Mark Alan E, Hush Noel S

机构信息

School of Chemistry, University of Sydney, Sydney, New South Wales 2006 Australia.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4219-24. doi: 10.1073/pnas.0806273106. Epub 2009 Feb 26.

Abstract

In 1968, Fröhlich showed that a driven set of oscillators can condense with nearly all of the supplied energy activating the vibrational mode of lowest frequency. This is a remarkable property usually compared with Bose-Einstein condensation, superconductivity, lasing, and other unique phenomena involving macroscopic quantum coherence. However, despite intense research, no unambiguous example has been documented. We determine the most likely experimental signatures of Fröhlich condensation and show that they are significant features remote from the extraordinary properties normally envisaged. Fröhlich condensates are classified into 3 types: weak condensates in which profound effects on chemical kinetics are possible, strong condensates in which an extremely large amount of energy is channeled into 1 vibrational mode, and coherent condensates in which this energy is placed in a single quantum state. Coherent condensates are shown to involve extremely large energies, to not be produced by the Wu-Austin dynamical Hamiltonian that provides the simplest depiction of Fröhlich condensates formed using mechanically supplied energy, and to be extremely fragile. They are inaccessible in a biological environment. Hence the Penrose-Hameroff orchestrated objective-reduction model and related theories for cognitive function that embody coherent Fröhlich condensation as an essential element are untenable. Weak condensates, however, may have profound effects on chemical and enzyme kinetics, and may be produced from biochemical energy or from radio frequency, microwave, or terahertz radiation. Pokorný's observed 8.085-MHz microtubulin resonance is identified as a possible candidate, with microwave reactors (green chemistry) and terahertz medicine appearing as other feasible sources.

摘要

1968年,弗勒利希指出,一组受驱动的振荡器能够凝聚,几乎所有提供的能量都会激活最低频率的振动模式。这是一种显著的特性,通常可与玻色 - 爱因斯坦凝聚、超导、激光以及其他涉及宏观量子相干的独特现象相比较。然而,尽管进行了深入研究,但尚未有明确的实例被记录在案。我们确定了弗勒利希凝聚最可能的实验特征,并表明它们是远离通常所设想的非凡特性的显著特征。弗勒利希凝聚体可分为3种类型:可能对化学动力学产生深远影响的弱凝聚体、将极大量能量导入一种振动模式的强凝聚体,以及将该能量置于单个量子态的相干凝聚体。研究表明,相干凝聚体涉及极大的能量,并非由提供了对利用机械供应能量形成的弗勒利希凝聚体最简单描述的吴 - 奥斯汀动力学哈密顿量产生,并且极其脆弱。它们在生物环境中无法实现。因此,将相干弗勒利希凝聚作为基本要素的彭罗斯 - 哈梅罗夫精心策划的客观还原模型及相关认知功能理论是站不住脚的。然而,弱凝聚体可能对化学和酶动力学产生深远影响,并且可能由生化能量或射频、微波或太赫兹辐射产生。波科尔尼观察到的8.085兆赫微管蛋白共振被确定为一个可能的候选者,微波反应器(绿色化学)和太赫兹医学则是其他可行的来源。

相似文献

1
Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4219-24. doi: 10.1073/pnas.0806273106. Epub 2009 Feb 26.
2
Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal.
Struct Dyn. 2015 Oct 13;2(5):054702. doi: 10.1063/1.4931825. eCollection 2015 Sep.
3
Order stability via Fröhlich condensation in bio, eco, and social systems: The quantum-like approach.
Biosystems. 2022 Feb;212:104593. doi: 10.1016/j.biosystems.2021.104593. Epub 2021 Dec 29.
4
Statistical thermodynamics of the Fröhlich-Bose-Einstein condensation of magnons out of equilibrium.
Phys Rev E. 2019 Sep;100(3-1):032126. doi: 10.1103/PhysRevE.100.032126.
5
Classical investigation of long-range coherence in biological systems.
Chaos. 2016 Dec;26(12):123116. doi: 10.1063/1.4971963.
6
Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021912. doi: 10.1103/PhysRevE.80.021912. Epub 2009 Aug 13.
7
Coherent zero-state and pi-state in an exciton-polariton condensate array.
Nature. 2007 Nov 22;450(7169):529-32. doi: 10.1038/nature06334.
8
Radiating Fröhlich system as a model of cellular electromagnetism.
Electromagn Biol Med. 2015;34(4):355-60. doi: 10.3109/15368378.2014.934381. Epub 2014 Jul 16.
9
Fröhlich systems in cellular physiology.
Prague Med Rep. 2012;113(2):95-104. doi: 10.14712/23362936.2015.25.
10
Quantum Fluctuations in the Fröhlich Condensate of Molecular Vibrations Driven Far From Equilibrium.
Phys Rev Lett. 2019 Apr 19;122(15):158101. doi: 10.1103/PhysRevLett.122.158101.

引用本文的文献

1
A quantum microtubule substrate of consciousness is experimentally supported and solves the binding and epiphenomenalism problems.
Neurosci Conscious. 2025 May 6;2025(1):niaf011. doi: 10.1093/nc/niaf011. eCollection 2025.
2
Unveiling long-range forces in light-harvesting proteins: Pivotal roles of temperature and light.
Sci Adv. 2025 May 2;11(18):eadv0346. doi: 10.1126/sciadv.adv0346. Epub 2025 Apr 30.
3
Effect of terahertz radiation on cells and cellular structures.
Front Optoelectron. 2025 Jan 27;18(1):2. doi: 10.1007/s12200-024-00146-y.
4
Toward a holographic brain paradigm: a lipid-centric model of brain functioning.
Front Neurosci. 2023 Dec 14;17:1302519. doi: 10.3389/fnins.2023.1302519. eCollection 2023.
7
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
J Comput Sci Syst Biol. 2014 Jul;7(4):119-136. doi: 10.4172/jcsb.1000147. Epub 2014 May 22.
8
Millimeter Wave Radiations Affect Membrane Hydration in Phosphatidylcholine Vesicles.
Materials (Basel). 2013 Jul 9;6(7):2701-2712. doi: 10.3390/ma6072701.
9
Semi-classical statistical description of Fröhlich condensation.
J Biol Phys. 2017 Jun;43(2):167-184. doi: 10.1007/s10867-017-9442-y. Epub 2017 Feb 14.

本文引用的文献

1
Quantum information processing in the wall of cytoskeletal microtubules.
J Biol Phys. 2006 Nov;32(5):413-20. doi: 10.1007/s10867-006-9025-9. Epub 2006 Dec 29.
2
Quantum dynamics of electronic excitations in biomolecular chromophores: role of the protein environment and solvent.
J Phys Chem A. 2008 Mar 20;112(11):2162-76. doi: 10.1021/jp710243t. Epub 2008 Feb 23.
3
Diagnosis of bladder cancer at 465 MHz.
Electromagn Biol Med. 2007;26(2):119-34. doi: 10.1080/15368370701380850.
4
Computational and noncomputational systems in brain and cognition: can one mask the other?
Int J Neurosci. 2007 May;117(5):681-710. doi: 10.1080/00207450600773913.
5
Elastic vibrations in seamless microtubules.
Eur Biophys J. 2005 Oct;34(7):912-20. doi: 10.1007/s00249-005-0461-4. Epub 2005 May 11.
6
Does quantum mechanics play a non-trivial role in life?
Biosystems. 2004 Dec;78(1-3):69-79. doi: 10.1016/j.biosystems.2004.07.001.
7
A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.
Biosystems. 2004 Nov;77(1-3):119-36. doi: 10.1016/j.biosystems.2004.04.006.
8
Excitation of vibrations in microtubules in living cells.
Bioelectrochemistry. 2004 Jun;63(1-2):321-6. doi: 10.1016/j.bioelechem.2003.09.028.
9
How enzymes work: analysis by modern rate theory and computer simulations.
Science. 2004 Jan 9;303(5655):186-95. doi: 10.1126/science.1088172.
10
Quantum computation in brain microtubules: decoherence and biological feasibility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 1):061901. doi: 10.1103/PhysRevE.65.061901. Epub 2002 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验