Suppr超能文献

一种使用虚拟人群评估药代动力学个体间变异性并整合物理化学、生物学、解剖学、生理学和遗传学常识的框架:“自下而上”与“自上而下”识别协变量的故事。

A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: A tale of 'bottom-up' vs 'top-down' recognition of covariates.

作者信息

Jamei Masoud, Dickinson Gemma L, Rostami-Hodjegan Amin

机构信息

Simcyp Limited, Sheffield, UK.

出版信息

Drug Metab Pharmacokinet. 2009;24(1):53-75. doi: 10.2133/dmpk.24.53.

Abstract

An increasing number of failures in clinical stages of drug development have been related to the effects of candidate drugs in a sub-group of patients rather than the 'average' person. Expectation of extreme effects or lack of therapeutic effects in some subgroups following administration of similar doses requires a full understanding of the issue of variability and the importance of identifying covariates that determine the exposure to the drug candidates in each individual. In any drug development program the earlier these covariates are known the better. An important component of the drive to decrease this failure rate in drug development involves attempts to use physiologically-based pharmacokinetics 'bottom-up' modeling and simulation to optimize molecular features with respect to the absorption, distribution, metabolism and elimination (ADME) processes. The key element of this approach is the separation of information on the system (i.e. human body) from that of the drug (e.g. physicochemical characteristics determining permeability through membranes, partitioning to tissues, binding to plasma proteins or affinities toward certain enzymes and transporter proteins) and the study design (e.g. dose, route and frequency of administration, concomitant drugs and food). In this review, the classical 'top-down' approach in covariate recognition is compared with the 'bottom-up' paradigm. The determinants and sources of inter-individual variability in different stages of drug absorption, distribution, metabolism and excretion are discussed in detail. Further, the commonly known tools for simulating ADME properties are introduced.

摘要

越来越多的药物研发临床阶段失败与候选药物在亚组患者中的效应有关,而非对“普通”人的效应。在给予相似剂量后,预期某些亚组会出现极端效应或缺乏治疗效果,这需要充分理解变异性问题以及识别决定每个个体对候选药物暴露情况的协变量的重要性。在任何药物研发项目中,越早了解这些协变量越好。降低药物研发失败率的一个重要推动因素是尝试使用基于生理的药代动力学“自下而上”建模和模拟,以优化药物在吸收、分布、代谢和排泄(ADME)过程方面的分子特性。这种方法的关键要素是将关于系统(即人体)的信息与药物的信息(例如决定跨膜通透性、在组织中分配、与血浆蛋白结合或对某些酶和转运蛋白的亲和力的物理化学特性)以及研究设计(例如剂量、给药途径和频率、伴随用药和食物)分开。在本综述中,将协变量识别中的经典“自上而下”方法与“自下而上”范式进行了比较。详细讨论了药物吸收、分布、代谢和排泄不同阶段个体间变异性的决定因素和来源。此外,还介绍了模拟ADME特性的常用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验