Suppr超能文献

利用扩展血管空间占位切片覆盖范围估计脑血容量。

Estimating cerebral blood volume with expanded vascular space occupancy slice coverage.

作者信息

Glielmi Christopher B, Schuchard Ronald A, Hu X P

机构信息

Department of Biomedical Engineering, Emory University, Georgia Institute of Technology, Atlanta, GA 30322, USA.

出版信息

Magn Reson Med. 2009 May;61(5):1193-200. doi: 10.1002/mrm.21979.

Abstract

A model for quantifying cerebral blood volume (CBV) based on the vascular space occupancy (VASO) technique and varying the extent of blood nulling yielding task-related signal changes with various amounts of blood oxygenation level-dependent (BOLD) and VASO weightings was previously described. Challenges associated with VASO include limited slice coverage and the confounding inflow of fresh blood. In this work, an approach that extends the previous model to multiple slices and accounts for the inflow effect is described and applied to data from a multiecho sequence simultaneously acquiring VASO, cerebral blood flow (CBF), and BOLD images. This method led to CBV values (7.9 +/- 0.3 and 5.6 +/- 0.3 ml blood/100 ml brain during activation [CBV(ACT)] and rest [CBV(REST)], respectively) consistent with previous studies using similar visual stimuli. Furthermore, an increase in effective blood relaxation (0.65 +/- 0.01) compared to the published value (0.62) was detected, likely reflecting inflow of fresh blood. Finally, cerebral metabolic rate of oxygen (CMRO(2)) estimates using a multiple compartment model without assumption of CBV(REST) led to estimates (18.7 +/- 17.0%) that were within published ranges.

摘要

先前已描述了一种基于血管空间占据(VASO)技术量化脑血容量(CBV)的模型,该模型通过改变血液归零程度,在不同的血氧水平依赖(BOLD)和VASO权重下产生与任务相关的信号变化。与VASO相关的挑战包括有限的切片覆盖范围以及新鲜血液的混淆流入。在这项工作中,描述了一种将先前模型扩展到多个切片并考虑流入效应的方法,并将其应用于同时采集VASO、脑血流量(CBF)和BOLD图像的多回波序列数据。该方法得出的CBV值(激活期间[CBV(ACT)]和静息期间[CBV(REST)]分别为7.9±0.3和5.6±0.3 ml血液/100 ml脑)与先前使用类似视觉刺激的研究结果一致。此外,检测到有效血液弛豫增加(0.65±0.01),相比已发表的值(0.62)有所增加,这可能反映了新鲜血液的流入。最后,使用不假设CBV(REST)的多室模型估计脑氧代谢率(CMRO₂),得出的估计值(18.7±17.0%)在已发表的范围内。

相似文献

1
Estimating cerebral blood volume with expanded vascular space occupancy slice coverage.
Magn Reson Med. 2009 May;61(5):1193-200. doi: 10.1002/mrm.21979.
5
Multi-shot turbo spin-echo for 3D vascular space occupancy imaging.
Magn Reson Imaging. 2013 Jul;31(6):875-81. doi: 10.1016/j.mri.2013.03.008. Epub 2013 Apr 18.
6
Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T.
Neuroimage. 2008 Mar 1;40(1):59-67. doi: 10.1016/j.neuroimage.2007.11.045. Epub 2007 Dec 8.
8
Implementation of vascular-space-occupancy MRI at 7T.
Magn Reson Med. 2013 Apr;69(4):1003-13. doi: 10.1002/mrm.24334. Epub 2012 May 14.
9
Theoretical and experimental investigation of the VASO contrast mechanism.
Magn Reson Med. 2006 Dec;56(6):1261-73. doi: 10.1002/mrm.21072.

引用本文的文献

1
Impaired cerebral vascular and metabolic responses to parametric N-back tasks in subjective cognitive decline.
J Cereb Blood Flow Metab. 2021 Oct;41(10):2743-2755. doi: 10.1177/0271678X211012153. Epub 2021 May 5.
2
Measurement of CMRO and its relationship with CBF in hypoxia with an extended calibrated BOLD method.
J Cereb Blood Flow Metab. 2020 Oct;40(10):2066-2080. doi: 10.1177/0271678X19885124. Epub 2019 Oct 30.
3
Techniques for blood volume fMRI with VASO: From low-resolution mapping towards sub-millimeter layer-dependent applications.
Neuroimage. 2018 Jan 1;164:131-143. doi: 10.1016/j.neuroimage.2016.11.039. Epub 2016 Nov 18.
6
Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI.
NMR Biomed. 2013 Aug;26(8):932-48. doi: 10.1002/nbm.2905. Epub 2013 Jan 28.
7
Implementation of vascular-space-occupancy MRI at 7T.
Magn Reson Med. 2013 Apr;69(4):1003-13. doi: 10.1002/mrm.24334. Epub 2012 May 14.
8
A review of the development of Vascular-Space-Occupancy (VASO) fMRI.
Neuroimage. 2012 Aug 15;62(2):736-42. doi: 10.1016/j.neuroimage.2012.01.013. Epub 2012 Jan 8.
9
Inflow-based vascular-space-occupancy (iVASO) MRI.
Magn Reson Med. 2011 Jul;66(1):40-56. doi: 10.1002/mrm.22775. Epub 2011 Feb 24.

本文引用的文献

1
Time-dependent correlation of cerebral blood flow with oxygen metabolism in activated human visual cortex as measured by fMRI.
Neuroimage. 2009 Jan 1;44(1):16-22. doi: 10.1016/j.neuroimage.2008.08.029. Epub 2008 Sep 4.
2
Vascular space occupancy weighted imaging with control of residual blood signal and higher contrast-to-noise ratio.
IEEE Trans Med Imaging. 2007 Oct;26(10):1319-27. doi: 10.1109/TMI.2007.898554.
3
A calibration method for quantitative BOLD fMRI based on hyperoxia.
Neuroimage. 2007 Sep 1;37(3):808-20. doi: 10.1016/j.neuroimage.2007.05.033. Epub 2007 May 31.
4
Theoretical and experimental investigation of the VASO contrast mechanism.
Magn Reson Med. 2006 Dec;56(6):1261-73. doi: 10.1002/mrm.21072.
5
Nonlinear responses of cerebral blood volume, blood flow and blood oxygenation signals during visual stimulation.
Magn Reson Imaging. 2005 Nov;23(9):921-8. doi: 10.1016/j.mri.2005.09.007. Epub 2005 Nov 3.
6
Noninvasive quantification of cerebral blood volume in humans during functional activation.
Neuroimage. 2006 Apr 1;30(2):377-87. doi: 10.1016/j.neuroimage.2005.09.057. Epub 2005 Nov 7.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验