Suppr超能文献

基于支持向量机的尿沉渣颗粒识别研究

[The study of SVM-based recognition of particles in urine sediment].

作者信息

Fu Cong, Xia Shun-Ren, Zhang Zan-Chao

机构信息

Key Lab of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027.

出版信息

Zhongguo Yi Liao Qi Xie Za Zhi. 2008 Nov;32(6):409-12.

Abstract

This article used support vector machine (SVM) algorithm to recognize the particles in urine sediment in this paper. After feature extraction, cross-validation method and the contour chart of the accuracy were implemented to select the kernel function and the parameters of SVM, and according to the characteristics of SVM classifier and sample data, Multi-SVMs with two-level-classifier was successfully designed and A classification matrix was eventually obtained. The evaluation by using clinical data and comparative results with the artificial neural network have demonstrated that the proposed algorithm gets better results.

摘要

本文采用支持向量机(SVM)算法识别尿沉渣中的颗粒。在特征提取之后,运用交叉验证方法和准确率等高线图来选择SVM的核函数及参数,并根据SVM分类器和样本数据的特点,成功设计了具有两级分类器的多支持向量机,最终得到了一个分类矩阵。利用临床数据进行的评估以及与人工神经网络的对比结果表明,所提出的算法取得了更好的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验