Suppr超能文献

用于自动步态分类的支持向量机

Support vector machines for automated gait classification.

作者信息

Begg Rezaul K, Palaniswami Marimuthu, Owen Brendan

机构信息

Centre for Ageing, Rehabilitation, Exercise and Sport, Victoria University, City Flinders Campus, Melbourne City MC, Victoria 8001, Australia.

出版信息

IEEE Trans Biomed Eng. 2005 May;52(5):828-38. doi: 10.1109/TBME.2005.845241.

Abstract

Ageing influences gait patterns causing constant threats to control of locomotor balance. Automated recognition of gait changes has many advantages including, early identification of at-risk gait and monitoring the progress of treatment outcomes. In this paper, we apply an artificial intelligence technique [support vector machines (SVM)] for the automatic recognition of young-old gait types from their respective gait-patterns. Minimum foot clearance (MFC) data of 30 young and 28 elderly participants were analyzed using a PEAK-2D motion analysis system during a 20-min continuous walk on a treadmill at self-selected walking speed. Gait features extracted from individual MFC histogram-plot and Poincaré-plot images were used to train the SVM. Cross-validation test results indicate that the generalization performance of the SVM was on average 83.3% (+/-2.9) to recognize young and elderly gait patterns, compared to a neural network's accuracy of 75.0+/-5.0%. A "hill-climbing" feature selection algorithm demonstrated that a small subset (3-5) of gait features extracted from MFC plots could differentiate the gait patterns with 90% accuracy. Performance of the gait classifier was evaluated using areas under the receiver operating characteristic plots. Improved performance of the classifier was evident when trained with reduced number of selected good features and with radial basis function kernel. These results suggest that SVMs can function as an efficient gait classifier for recognition of young and elderly gait patterns, and has the potential for wider applications in gait identification for falls-risk minimization in the elderly.

摘要

衰老会影响步态模式,对运动平衡的控制造成持续威胁。自动识别步态变化具有诸多优势,包括早期识别高危步态以及监测治疗效果的进展情况。在本文中,我们应用一种人工智能技术[支持向量机(SVM)],从年轻人和老年人各自的步态模式中自动识别其步态类型。在跑步机上以自选步行速度连续行走20分钟期间,使用PEAK - 2D运动分析系统对30名年轻人和28名老年人参与者的最小足间隙(MFC)数据进行了分析。从个体MFC直方图和庞加莱图图像中提取的步态特征被用于训练支持向量机。交叉验证测试结果表明,支持向量机识别年轻人和老年人步态模式的泛化性能平均为83.3%(±2.9),而神经网络的准确率为75.0±5.0%。一种“爬山”特征选择算法表明,从MFC图中提取的一小部分(3 - 5个)步态特征能够以90%的准确率区分步态模式。使用接收器操作特征图下的面积评估步态分类器的性能。当使用减少数量的选定良好特征和径向基函数核进行训练时,分类器的性能有明显提升。这些结果表明,支持向量机可以作为一种有效的步态分类器,用于识别年轻人和老年人的步态模式,并且在为老年人最小化跌倒风险的步态识别中具有更广泛应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验