Center for Biomaterial Development, Institute of Polymer Research, GKSS Research Center Geesthacht GmbH, 14513 Teltow, Germany.
Biomacromolecules. 2009 Apr 13;10(4):975-82. doi: 10.1021/bm900038e.
Biodegradable shape-memory polymers have attracted tremendous interest as potential implant materials for minimally invasive surgery. Here, the precise control of the material's functions, for example, the switching temperature T(sw), is a particular challenge. T(sw) should be either between room and body temperature for automatically inducing the shape change upon implantation or slightly above body temperature for on demand activation. We explored whether T(sw) of amorphous polymer networks from star-shaped rac-dilactide-based macrotetrols and a diisocyanate can be controlled systematically by incorporation of p-dioxanone, diglycolide, or epsilon-caprolactone as comonomer. Thermomechanical experiments resulted that T(sw) could be adjusted between 14 and 56 degrees C by selection of comonomer type and ratio without affecting the advantageous elastic properties of the polymer networks. Furthermore, the hydrolytic degradation rate could be varied in a wide range by the content of easily hydrolyzable ester bonds, the material's hydrophilicity, and its molecular mobility.
可生物降解的形状记忆聚合物作为微创植入材料引起了极大的关注。在这里,对材料功能的精确控制,例如切换温度 T(sw),是一个特别的挑战。T(sw) 应该在室温到体温之间,以便在植入后自动引发形状变化,或者略高于体温以按需激活。我们探讨了是否可以通过将 p-二氧六环酮、二甘醇酸酯或 ε-己内酯作为共聚单体引入星形 rac-丙交酯基大分子引发剂和二异氰酸酯的无定形聚合物网络中来系统地控制 T(sw)。热机械实验表明,通过选择共聚单体的类型和比例,可以将 T(sw) 在 14 到 56 摄氏度之间进行调节,而不会影响聚合物网络的有利弹性性能。此外,通过易于水解的酯键的含量、材料的亲水性及其分子迁移率,可以在很宽的范围内改变水解降解速率。